
Running Spark on Kubernetes:
Best Practices and Pitfalls
Jean-Yves Stephan, Co-Founder & CEO @ Data Mechanics
Julien Dumazert, Co-Founder & CTO @ Data Mechanics

Who We Are

Jean-Yves “JY” Stephan
Co-Founder & CEO @ Data Mechanics
jy@datamechanics.co

Previously:
Software Engineer and
Spark Infrastructure Lead @ Databricks

Julien Dumazert
Co-Founder & CTO @ Data Mechanics
julien@datamechanics.co

Previously:
Lead Data Scientist @ ContentSquare
Data Scientist @ BlaBlaCar

mailto:jy@datamechanics.co
mailto:julien@datamechanics.co

Who Are You?

Poll: What is your experience with running Spark on Kubernetes?

● 61% - I’ve never used it, but I’m curious about it.

● 24% - I’ve prototyped using it, but I’m not using it in production.

● 15% - I’m using it in production.

This slide was edited after the conference to show the results for the poll.
You can see and take the poll at https://www.datamechanics.co/spark-summit-poll

https://www.datamechanics.co/spark-summit-poll?utm_source=ss2020&utm_medium=slides

Agenda

A quick primer on Data Mechanics

Spark on Kubernetes
Core Concepts & Setup
Configuration & Performance Tips
Monitoring & Security
Future Works

Conclusion: Should you get started?

Data Mechanics - A serverless Spark platform

● Applications start and autoscale in
seconds.

● Seamless transition from local
development to running at scale.

● Tunes the infra parameters and Spark
configurations automatically for each
pipeline to make them fast and stable.

https://www.datamechanics.co

https://www.datamechanics.co/?utm_source=ss2020&utm_medium=slides

Customer story: Impact of automated tuning on Tradelab

For details, watch our SSAI 2019 Europe talk
How to automate performance tuning for Apache Spark

● Stability: Automatic remediation of
OutOfMemory errors and timeouts

● 2x performance boost on average
(speed and cost savings)

https://databricks.com/session_eu19/how-to-automate-performance-tuning-for-apache-spark

GatewayData engineers

Data scientists

We’re deployed on k8s in our customers cloud account

Spark on Kubernetes:
Core Concepts & Setup

Where does Kubernetes fit within Spark?

Kubernetes is a new cluster-manager/scheduler for Spark.
● Standalone
● Apache Mesos
● Yarn
● Kubernetes (since version 2.3)

Spark on Kubernetes - Architecture

Source

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/spark-k8s-vsphere67-perf.pdf

Two ways to submit Spark applications on k8s

● “Vanilla” way from Spark main open
source repo

● Configs spread between Spark config
(mostly) and k8s manifests

● Little pod customization support
before Spark 3.0

● App management is more manual

● Open-sourced by Google (but works on
any platform)

● Configs in k8s-style YAML with sugar
on top (configmaps, volumes, affinities)

● Tooling to read logs, kill, restart,
schedule apps

● Requires a long-running system pod

spark-on-k8s operatorSpark-submit

App management in practice

spark-on-k8s operatorSpark-submit
Run an app
$ spark-submit --master k8s://https://<api-server> …

List apps
k get pods -label "spark-role=driver"
NAME READY STATUS RESTARTS AGE
my-app-driver 0/1 Completed 0 25h

Read logs
k logs my-app-driver

Describe app
No way to actually describe an app and its parameters…

Run an app
$ kubectl apply -f <app-manifest>.yaml

List apps
$ k get sparkapplications
NAME AGE
my-app 2d22h

Read logs
sparkctl log my-app

Describe app
$ k get sparkapplications my-app -o yaml
apiVersion: sparkoperator.k8s.io/v1beta2
kind: SparkApplication
 arguments:
 - gs://path/to/data.parquet
 mainApplicationFile: local:///opt/my-app/main.jar
 ...
status:
 applicationState:
 state: COMPLETED
 ...

Dependency Management Comparison

● Lack of isolation
○ Global Spark version
○ Global Python version
○ Global dependencies

● Lack of reproducibility
○ Flaky Init scripts
○ Subtle differences in AMIs or system

● Full isolation
○ Each Spark app runs in its own docker

container

● Control your environment
○ Package each app in a docker image
○ Or build a small set of docker images

for major changes and specify your app
code using URIs

KubernetesYARN

Spark on Kubernetes:
Configuration & Performance Tips

A surprise when sizing executors on k8s

Assume you have a k8s cluster with 16GB-RAM 4-core instances.

Do one of these and you’ll never get an executor!

● Set spark.executor.cores=4

● Set spark.executor.memory=11g

k8s-aware executor sizing
What happened?
→ Only a fraction of capacity is available to Spark pods,
and spark.executor.cores=4 requests 4 cores!

Compute available resources
● Estimate node allocatable: usually 95%
● Measure what’s taken by your daemonsets (say 10%)

→ 85% of cores are available

Configure Spark
spark.executor.cores=4
spark.kubernetes.executor.request.cores=3400m

Node capacity

Resources reserved for k8s and system
daemons

Node allocatable

Resources requested by daemonsets

Remaining space for Spark pods!

More configuration tips here

https://docs.datamechanics.co/docs/configuring-spark-jobs

Dynamic allocation on Kubernetes

● Full dynamic allocation is not available. When killing an exec pod, you
may lose shuffle files that are expensive to recompute.
There is ongoing work to enable it (JIRA: SPARK-24432).

● In the meantime, a soft dynamic allocation is available from Spark 3.0
Only executors which do not hold active shuffle files can be scaled down.

spark.dynamicAllocation.enabled=true
spark.dynamicAllocation.shuffleTracking.enabled=true

https://issues.apache.org/jira/browse/SPARK-24432

Cluster autoscaling & dynamic allocation

k8s can be configured to autoscale if pending pods
cannot be allocated.

Autoscaling plays well with dynamic allocation:
● <10s to get a new exec if there is room in the cluster
● 1-2 min if the cluster needs to autoscale

Requires to install the cluster autoscaler on AKS (Azure)
and EKS (AWS). It is natively installed on GKE (GCP).

K8s cluster

Spark
application

Spark
application

Cluster autoscaling

Dynamic allocation

Dynamic allocation

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Overprovisioning to speed up dynamic allocation

To further improve the speed of dynamic allocation,
overprovision the cluster with low-prio pause pods:

● The pause pods force k8s to scale up
● Spark pods preempt pause pods’ resources when

needed

Cluster autoscaler doc about overprovisioning.

K8s cluster

Spark
application

Cluster autoscaling

Dynamic allocation

Spark
application

Dynamic allocation

Pause
pod

https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md#how-can-i-configure-overprovisioning-with-cluster-autoscaler

Further cost reduction with spot instances

Spot (or preemptible) instances can reduce costs up to 75%.

● If an executor is killed, Spark can recover
● If the driver is killed, game over!

Node selectors and affinities can be used to
constrain drivers on non-preemptible nodes.

Non-preemptible node

Driver Driver

Preemptible node

Exec

Preemptible node

Exec

Preemptible node

Exec

I/O with an object storage

Usually in Spark on Kubernetes, data is read and written to an object storage.

Cloud providers write optimized committers for their object storages, like the S3A
Committers.

If it’s not the case, use the version 2 of the Hadoop committer bundled with Spark:

The performance boost may be up to 2x! (if you write many files)

spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version=2

https://hadoop.apache.org/docs/r3.1.1/hadoop-aws/tools/hadoop-aws/committers.html
https://hadoop.apache.org/docs/r3.1.1/hadoop-aws/tools/hadoop-aws/committers.html

Improve shuffle performance with volumes

I/O speed is critical in shuffle-bound workloads, because Spark uses local files as
scratch space.

Docker filesystem is slow → Use volumes to improve performance!

● emptyDir: use a temporary directory on the host (by default in Spark 3.0)

● hostPath: Leverage a fast disk mounted in the host (NVMe-based SSD)

● tmpfs: Use your RAM as local storage (⚠ dangerous)

Performance

We ran performance benchmarks to compare Kubernetes and YARN.
Results will be published on our blog early July 2020.

(Sneak peek: There is no performance penalty for running on k8s if you follow our recommendations)

https://spark.apache.org/docs/3.0.0-preview2/running-on-kubernetes.html#local-storage
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://spark.apache.org/docs/3.0.0-preview2/running-on-kubernetes.html#using-ram-for-local-storage
https://www.datamechanics.co/blog?utm_source=ss2020&utm_medium=slides

Spark on Kubernetes:
Monitoring & Security

Monitor pod resource usage with k8s tools

Workload-agnostic tools to monitor pod usages:

● Kubernetes dashboard (installation on EKS)
● The GKE console

Issues:

● Hard to reconcile with Spark jobs/stages/tasks
● Executors metadata are lost when the Spark app

is completed

GKE console

Kubernetes dashboard

https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html

Spark history server

Setting up a History server is relatively easy:

● Direct your Spark event log file to S3/GCS/Azure Storage Account with
the spark.eventLog.dir config

● Install the Spark history server Helm chart on your cluster

What’s missing: resource usage metrics!

https://github.com/helm/charts/tree/master/stable/spark-history-server

“Spark Delight” - A Spark UI replacement

Note: This slide was added after the conference.
Sorry for the self-promotion. We look forward to the feedback from the community!

● We’re building a better Spark UI
○ better UX
○ new system metrics
○ automated performance

recommendations
○ free of charge
○ cross-platform

● Not released yet, but we’re working
on it! Learn more and leave us
feedback.

https://www.datamechanics.co/blog-post/building-a-better-spark-ui?utm_source=ss2020&utm_medium=slides

Export Spark metrics to a time-series database

Spark leverages the DropWizard library to produce
detailed metrics.

The metrics can be exported to a time-series
database:

● InfluxDB (see spark-dashboard by Luca Canali)
● Prometheus

○ Spark has a built-in Prometheus servlet since version 3.0
○ The spark-operator proposes a Docker image with a

Prometheus java agent for older versions

Use sparkmeasure to pipe task metrics and stage
boundaries to the database Luca Canali, spark-dashboard

https://spark.apache.org/docs/3.0.0-preview2/monitoring.html#metrics
https://github.com/cerndb/spark-dashboard
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/tree/master/spark-docker
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/tree/master/spark-docker
https://github.com/LucaCanali/sparkMeasure
https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Dashboard
https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Dashboard

Security
Kubernetes security best practices apply to Spark on Kubernetes for free!

Access control
Strong built-in RBAC system in Kubernetes
Spark apps and pods benefit from it as native k8s resources

Secrets management
Kubernetes secrets as a first step
Integrations with solutions like HashiCorp Vault

Networking
Mutual TLS, Network policies (since v1.18)
Service mesh like Istio

https://github.com/hashicorp/vault
https://kubernetes.io/docs/concepts/services-networking/network-policies/

Spark on Kubernetes:
Future Works

Features being worked on

● Shuffle improvements: Disaggregating storage and compute
○ Use remote storage for persisting shuffle data: SPARK-25299
○ Goal: Enable full dynamic allocation, and make Spark resilient to node loss (e.g. spot/pvm)

▪ Better Handling for node shutdown
▪ Copy shuffle and cache data during graceful decomissioning of a node: SPARK-20624

▪ Support local python dependency upload (SPARK-27936)

▪ Job Queues and Resource Management

https://issues.apache.org/jira/browse/SPARK-25299
https://issues.apache.org/jira/browse/SPARK-20624
https://issues.apache.org/jira/browse/SPARK-27936

Spark on Kubernetes:
Should You Get Started?

● Native Containerization

● A single cloud-agnostic infrastructure for your
entire tech stack with a rich ecosystem

● Efficient resource sharing guaranteeing both
resource isolation and cost efficiency

● Learning curve if you’re new to Kubernetes

● A lot to setup yourself since most managed
platforms do not support Kubernetes

● Marked as experimental (until 2.4) with missing
features like the External Shuffle service.

ConsPros

We chose Kubernetes for our platform - should you?

For more details, read our blog post
The Pros and Cons of Running Apache Spark on Kubernetes

https://www.datamechanics.co/blog-post/pros-and-cons-of-running-apache-spark-on-kubernetes?utm_source=ss2020&utm_medium=slides

Checklist to get started with Spark-on-Kubernetes

● Setup the infrastructure
○ Create the Kubernetes cluster
○ Optional: Setup the spark operator
○ Create a Docker Registry
○ Host the Spark History Server
○ Setup monitoring for Spark application logs and metrics

● Configure your apps for success
○ Configure node pools and your pod sizes for optimal binpacking
○ Optimize I/O with proper libraries and volume mounts
○ Optional: Enable k8s autoscaling and Spark app dynamic allocation
○ Optional: Use spot/preemptible VMs for cost reduction

● Enjoy the Ride !

Our platform helps
with this, and we’re
happy to help too!

https://www.datamechanics.co/?utm_source=ss2020&utm_medium=slides

The Simplest Way To Run Spark
https://www.datamechanics.co

Thank you!

https://www.datamechanics.co/?utm_source=ss2020&utm_medium=slides

Appendix

Cost reduction with cluster autoscaling

Configure two node pools for your k8s cluster
● Node pool of small instances for system pods (e.g. ingress controller,

autoscaler, spark-operator)
● Node pool of larger instances for Spark applications

Since node pools can scale down to zero on all cloud providers,
● you have large instances at your disposal for Spark apps
● you only pay for a small instance when the cluster is idle!

