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THE CONJUGATE GRADIENT METHOD IN EXTREMAL 
PROBLEMS* 

B. T. POLYAK 

Moscow 

(Received 13 November 1967) 

THE conjugate gradient method was first described in 11, 21 for solving sets of 
linear algebraic equations. The method, being iterative in form, has all the merits 
of iterative methods, and enables a set of linear equations to be solved (or what 

amounts to the same thing, the minimum of a quadratic functional in finitedimen- 
sional space to be found) after a finite number of steps. The method was later 

extended to the case of Hilbert space [3-51, and to the case of non-quadratic 
functionals [6, 71. 

The present paper proves the convergence of the method as applied to non- 
quadratic functionals, describes its extension to constrained problems, considers 
means for further accelerating the convergence, and describes experience in the 
practical application of the method for solving a variety of extremal problems. 

1. Minimization of Quadratic Functionals 

Consider the problem of minimizing the quadratic functional f(s) = l/Z (Ax, 

z) - (b, x) in Hilbert space H. Here, A is a bounded self-conjugate operator 

from H into H, and kc, y) is the scalar product. In the conjugate gradient method, 

an iterative sequence of vectors 29, pn E H is constructed, starting from 

some ~0 E H, from the expressions 

x~+~ = xn + a#, 

pn = -f’(xn) + pnpn-1, 
(1) 
(2) ’ 

an = _ (f’(xn)7Pn) 
(W,P”) ’ 

(3) 

* Zh. vy’chisl. Mat. mat. Fiz., 9, 4, 807-821. 1969. 
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j 

_ (4y’7 P (xR) ) 
&a= (Ap-*, p”-‘) ’ 

n E Ii, 

0, n E 12, (4) 

Here, f’(x) = Az - b is the gradient of f(x), and I, and I, are sets of indices 

such that Ii lJ ZZ = (0, 1, . . ., IZ, . ..}. 0 E 12. The n for which p, = 0 will 

be called the instants of renewal of the method. In the general form of the 
conjugate gradient method, I, = 101, i.e. renewal is performed only at the first 
step. In the other extreme case, when Z2 = (0, 1, . . .}, i.e., f3, I 0, we get 

the method of steepest descent. If Zz = (0, S, 28, . . .}, the method is identical 

with the s-step method of steepest descent. 

The following propositions hold [l-5, 71. 

1. The vectors p” are A-orthogonal between two renewals, i.e. (Apn, pk) = 0 

for n < k, {n -j- 1, n + 2, . . . , k) c 1,. 

2. The vectors f’ (x9 are orthogonal between two renewals, i.e. (f’(sn), 

fww = 0 for n cx k, {n + 1, n + 2, . . , , k - I} c Zi. 

It follows at once from these propositions that a, and fl, can be evaluated 
from the following expressions, equivalent to (3) and (4): 

I IIf II2 ~.~ 
fin = Ilf(P-‘)lP ’ 

n E Zi, 

10 I n E zp 

(3’) 

(4’) 

Many other computational schemes are available for the conjugate gradient method 
D-5, 7, 81. 

3. If f(x) has a minimum on H, I, = {Ol, then xR is the minimum of f(x) in the 
subspace passing through x0 and generated by the vectors p (ti) , . . . , f’(z”-1) . 

Hence the minimum of f(x) will be found in N-dimensional space EN at&r 
not more than N steps. 

4. If f(x) has a minimum in H, then, whatever I, and I,, the vectors xn will 
be convergent to the minimum point x* (or to the one nearest x0). Here, if I, = (01, 
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wha-e m and M are the edges of the spectrum of A (i.e. 0 < m =: inf (As, x), 
If x II =f 

M = ,,S~P~~~,~)~, Pntl) 

(afti, &,= 

is an n-th degree ~lynomi~, dP(q = 

where E, is the spectral function of the operator A. 

5. If f(x) is strongly convex (i.e. m > 01, the rate of convergence for 
I, = 101 is estimated from 

Notice, incidentally, that the same estimate 461 is obtained for the two-step of 
steepest descent. For the ordinary method of steepest descent, 

i-e., for m << M, it is much more slowly convergent than the conjugate gradient 
method or the two-step method of steepest descent. 

Propositions 4 and 5 were first proved in ISI, then independently, in 171. 

Let us note some further properties of the conjugate gradient method, not 
all of which seem to have been previously described. 

Property 1. If f(x) does not attain a minimum in finite-dimensional space 
(which is only possible when the matrix A is not positive definite), it turns out 
that, at one of the steps of the conjugate gradient method, assuming that the 
process takes place non-degenerately, (Ap*, p”) < 0, f’(z”) # 0 (i.e. 

an < 0 or a, = 4. The method thus gives a simple means for testing if a 
matrix is positive definite. 

Property 2. If f(x) is not strongly convex (i.e. m = O), the convergence rate 
given by (5) may be vanishingly small. For example, let 
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f(s) = ‘/2 f tw(t)dt, 4q=J52(-1,1), x0(t)= 1. 

-1 

Obviously, z* (1) = 0, j(Y) = 0. Since f’(r) = t%( 1)) the subspace passing 

through x0 and generated by f’(ti) , . . . , f(znei), will be a set of even poly- 

nomials of degree 2n, taking the value 1 at 0. These polynomials may be 

n 

written in the form z @2k+1(W where P,(t) are Legendre polynomials 
k-0 

of degree k, and the c k have to satisfy 

Thus, xn minimizes 

n 

with the condition 8 ck &+I (0) = 1. Noting that P&+i(O) =(-i)Q-% 
LO 

(2k + W2kk, we can find the ck by the method of Lagrange muh.ipliers, and 

and then find 

f(Zn)= (i (2k+i)2(4k+3)2-4k-'(C2kk)2 )-’ . 
k-=0 

Since 2-4k (C2kR) 2 < 7j / k, where rI is a constant (this follows from Stirling’s 

formula), we have 

f(c)> ($j r~ltF)+ b rc3. 

k=O 

Since 
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ll~ll2 = [zZ(t)dt 3 5 @X?(t)& = 2f(s), 
-1 --1 

we have 

11~~ - z*)I = 1i.F /I > (2f(xn) )‘I2 > r&/2. 

In short, the conjugate gradient method is more slowly convergent than a geometric 

progression in this example. All in all, given a h > 0, an example can be found, 

in which the convergence is not faster than n-h But notice that the method of 

steepest descent is always even more slowly convergent. 

Property 3. If f(z) = IlCz - d112, where C is a linear operator from 

H into EN, and f(x) attains a minimum (which is true in any case if H is finite- 

dimensional), then the conjugate gradient method (with I, = iO1) converges after 

not more than N steps, independently of the number of dimensions of H. 

Property 4. In the finite-dimensional case the conjugate gradient method 

may be used, not only to solve a set of linear equations, but also to invert a 

matrix. In fact, let pi, i = 0, . . . , N - 1, be the vectors obtained by the conjugate 

gradient method with I, = lO1. We normalize them: ‘Fi = (Api, pi)-“@, snd 

form the matrix P, whose columns are the vectors p-i. We then find, from the 

property ,(A$, pk) = Q, i f: k, that P*AP = I, where I is the unit matrix. 

If A is non-degenerate, and all the pi non-zero, we have A-’ = PP*. Knowing 

the vectors pi, therefore, we can easily find A-‘. Of course the memory capacity 

required here is much greater. 

Property 5. As already mentioned, the conjugate gradient method is finite 

in the N-dimensional case. Due to unavoidable computational errors, however, the 

xN will not be the exact solution. In reality, therefore, the conjugate gradient 

method is iterative even in this case. Little attention has been paid to aspects 

such as the error dependence on the type of computational scheme or on the 

stipulation of the matrix, and on the best choice of instants of renewal, etc. 

Some possible means for increasing the accuracy can be indicated. First, 

the method only requires the multiplication of a matrix by a vector, and the 

evaluation of scalar products, and the relevant computations can easily be 

performed to double accuracy. Second, we can utilize the values obtained for 

the pi and hence the approximate value PP* of A -I (see above), to form the new 

system PP*Ax = PP*b, which is better posed (this device is discussed in more 
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detail in Section 3 below). 

2. Minimization of Non-quadratic Functionals 

It was observed in [61 that the conjugate gradient method in the form (l), (2), 
(3) and 1481, can also be used for non-quadratic functionals. Given an N-dimen- 
sional fiction f(x) with the gradient f’ (3~1, the followi~ expressions are used in 
E61 for ~omputi~ the coefficients czR and /3,: 

~,:f(sn + a#)= f&t(xn + UP), 

I IIf’ II2 
pn= Ilp (P-q II2 ’ 

- n + kN 

, 

(8) 

(9) 

t 07 n - kN, k = 0,1,. . . . 

Though the results of compu~tions from (l), (21, 18) and (9) are given for a variety 
of functions in E61, the convergence of the method is not discussed. 

An ana.log of (4) for @, is given in [71 for a twice differentiable functional 
f(x) in H, namely, 

1 
_ (f”(s”)P-‘7 f’w9 ) -, 

pn = (y(P)p”-‘, p”-‘) ’ 
n # 0, 

(W 
0, n = 0, 

and the convergence of the method (11, (21, (8) and (10) at the rate of a geometric 
progression is proved under the assumptions of strong convexity and reasonable 
smoothness of f(x). The method (10) is inconvenient in the sense that the second 
derivative f”(x) has to be evaluated. The main advantage of the conjugate 
gradient method over, say, Newton’s method is thereby lost (a discussion of the 
advantages and disadvantages of different minimization methods from the compu- 
tational point of view may be found in E91). 

We give below an alternative method for finding p,, which does not involve 
the evaluation of f”(x) and for which convergence at the rate of a geometric 
progression can also be proved. In addition, it turns out that, given a reasonably 
smooth finitedimensional function, the method is convergent at a squared rate, 
i.e. much faster than the various versions of the gradient method. 

Take the problem of minimizing a differentiable functional f(x) in Hilbert 
space H. We use the method (l), (21, (8) and (11): 
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This method is obviously the same as (l)-(4) in the case of a quadratic functional. 

Before proving the convergence of the method, we present some obvious 
relationships. 

Lemma 1 

We have (p(P), p”-l) = 0, (f’(P), p”) = -llP(~n)l12. ilPnl12 = 

llf’(z”) 112 + fLl~llpn-‘l12 2 IIf l12. 

The first of these follows from (8); and then, recalling (2), we obtain the 
remaining expressions. 

We shall first show that, for Upoorn functions (not necessarily convex or 
smooth), the method behaves like the gradient method, i.e. f’(C) --t 0 in it 
whatever the initial approximation. 

Theorem 1 

If f(x) has a lower bound, the set {x: f(z) < f(z’)) is bounded, f’ tx) 

satisfies a Lipschitz condition, and renewal is carried out atIer a finite number 
of steps, then, in method (11, (2), (8) and (111, 

lim IIf II = 0. 
n-+0 

Proof. Let Ilj’(sn) II 2 e > 80 for all n. We first show that lIpnIl S cnllf’ 

for all n. In fact, for 72 E I, ; 
(P) II 

Bn =I (~(5”),f’(xn)--f/(x:-i)) < IIf’ It R IF - xn-‘II _- 
Ilf(s”--‘) 112 

< 
IIf’ I12 . 

Rc IV’ (xn) II < Rccn-i IIf’ II 
E IIP(s”-‘) II i e IIp”-‘II ’ 

where llzn - ~n--iIl < c, since f(xn) Q f(znmi) <f(9), while the set 

(5: f(z) G f(9)) is bounded. Hence 
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IIP” II2 = IIf 112 + pn* llp”-‘11* < IIf l12f 

where en2 = 1 + R%% E_, / s2. Further, 

If’ (5%) Ii2 = - (P”, f(zn) ) = - (P”, P(m) - f’(x”-ti) 1 

lip” IIRII 5” - Pq = h?&Jnl12, 

whence 

a > 1 IMw)lP > 1 
n A_iT ~fp7q2 c, Rc,z= 6,. 

Since c, = 1 for all instants of renewal (I[pnJI = IIf' II for n E I,), while 

renewal is carried out after a finite number of steps, then c, is bounded, so that 

an > 6, > 6 > 0 for all n. Finally, 

Hence it follows that f(P) --f -00, which contradicts our assumption that 

f&f has a lower bound. The theorem is proved. 

We shall now show that, in the case of a strongly convex functional, the 
sequence 1~~ is convergent to the minimum point X* at the rate of a geometric 
progression. 

Theorem 2 

If f(x) is a strongly convex functional, and f’ (3~) satisfies a Lipschitz 
condition, then, whatever the method of selecting the instants of renewal, zR is 
convergent in method (11, (21, (8) and (11) to X* at the rate of a geometric 
progression. 
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Proof. Since f(x) is strongly convex, (P(x~+~) - f81zn), gntl _ 2”) & 

Flh=iIf’(5”),P(Zn)-P(5n-‘)f~ llf(z”) II hAP”-~ll 
Ilf’(s*-1) 112 an-i m IIpn-fl12 -= 

R IIf II 
m Ilp-*I! 

Then, 

lp”ll2 = IIf II2 + pn2 lip-‘II2 d Ilf’(q lP$_ -$ Ilf’(@ II2 = 

(1 -k~)irfw)ll? 

Further, as in the proof of Theorem 1, 

a > i Ilr”(~“N12 > __ 1 
nciz-llP”II 

-----.--=a. rc R(1 +R2/m2) 

Finally, f(~+i ) ,i f(~ + 6pn) < f(~) - (6 / 2) Ilf’(~n)lP. But, in the case 

of a strongly convex factional, IIf \I2 2 Z~(~(~) - f”), where f’ = /(z*) 

=;. min f(z). Hence f(~n+~) - f’ G f(r”) - f” - (6 /2) IIf’ II2 S U(s”) - 

f.)(i - 6m). This implies the convergence f(zn) -+ f’ at the rate of a 

geometric progression, while, since f(x) - f’ > m/k - z*I12, we have 

in + x* at the rate of a geometric progression. 

With additional assumptions regarding the smoothness of f(x), a more 
accur&e bound might be obtained for the ratio of the progression; but we shall 
not dwell on this, since Theorem 3 to be proved below, shows that the method 
is convergent at a squared rate in the case of a finite-dimensional smooth 
functional. 
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Theorem 3 

Let x E EN, while f(x) is a twice differentiable strongly convex function, 

whose second derivative is bounded and satisfies a Lipschitz condition. Then, 

in the method (11, (2), (8) and (11) with Iz = {O, N, 2N, . . .} . 

Proof. Consider the quadratic functional T(Z) = ~/2(f//(~f) (5 - z*), 

z - 2.). This has a minimum at the point x* which is also a minimum point of 
f(x). Consider the conjugate gradient method, starting from the point 59 = ti 
and applied to the functional &I: 

p+i = 9 4 z&p, fi” = -r’ (Z”“) + fQn-i, 

an= - ww7P”) p = llf(f~)l/* 
vw)~n7m ’ n llfp-~~ ’ 

n#O, po=o. 

The basic idea of the proof consists in showing that the points I?” and xn are 
close together, We use induction. Let llsn _ gnll < C&Z? - Y/2, I/p”-1 - 

@n-l]] < ic,llrO - s’@ (this is certainly true for n =‘O). It is easy to obtain 

boundsfor the type Ilr(z) -f”(x)11 G Llls-z*ll, IIf’ --f’(x)11 4 LII 
x - x* II”, /zP -Sl\ < (f~~~)l’zll x II~----*II, ~llPl12< (f”(Z)/4 PII 

=G WIPIP, mllp(12 < (f”(s‘)p, P) G JfllPl127 mllz - 2*112 < IIf’ /I2 

sz Mb - z1112, 112112 - 2*1p sg llT’(z) II2 < Mllz - ~*112, f’(5) = 

f”(E) (5 -J?, g = z + 0(x 7 xf), 0 < 8 < 1. Using these, we find 

after fairly laborious calculations that must be omitted here, that 1 pn _ B,, ( 

4 b,jlti-- cfll, lip” - pli < h+lllZO - x*i2, 1 a* - an 1 f a,tl~” - xx il 

11~~ - PII < cn+~ll~~- ~*112, bn, JCn+lr an, cn+l a bun&& Thus, 

I/s” - ~11 < clls” - ~‘11~ for all n,< N. But fN = J* (since the conjugate 

gradient method is finite for the quadratic functional f(x) 1. Hence lbN - x*1/ < 
CllSO - 5* 112. Similarly, we get IIzkN - x*ll < cll~Y+~)~ - 5*112 for all 
integral k. Since the convergence of the method was proved in Theorem 2, we have 

IIPN - $11 < JI; c, p < 1, for some m. Hence 

II 23 
mtk) N _ $ iI\< > psk = ~~~~~~~ , Q~~GT+, &+ . 
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Notice that, under the conditions of the theorem, we can also apply Newton’s 
method locally and obtain for it the bound \lsn - 911 < r-2”//~& - x*/l, r < 1. 

Thus, N steps of the conjugate gradient method are roughly equivalent to one step 
of Newton’s method (as might naturally be expected). On the other hand, no 
additional assumptions regarding the closeness of x0 to the solution are required 
for the convergence of the conjugate gradient method, as distinct from Newton’s 
method. 

In the case of a quadratic functional, Theorem 3 asserts in essence that the 
method is stable in the presence of errors when compu!ing x”, f’(sR), pn, a,, 

and /3, (for XR, f/(x”) and p” the errors may be of the order 11~9 - z*I/~, and 

for a, and /3, of the order I(xn - ~‘11). 

3. Further Acceleration of the Convergence 

If the memory capacity allows the vectors p” to be stored, they can be 
utilized for further accelerating the convergence; in fact, they can be taken as a 
new basis in the space, in which case the properties of the functional will be 
considerably improved. 

We shall describe the computational procedure in more detail. In N-dimen- 
sional space, we perform N iterations in accordance with (11, (21, (8) and (ll), 
without renewal (i.e. I, = 101). We inspect the N x N matrix P, whose columns 
are the vectors pn = (Ian f IIP (So) lip”. We perform the coordinate trausforma- 
tion x = P,y, and consider our fictional f(x) in the new variables: v(y) = f 

(m!) = f(x)* We use the conjugate gradient method to minimize r$(y). 

Since q’(y) = PI*?(~), the method will run thus: 

Y*+~ = yn + a#, xn = P,yn, sn = -Pl”f(sn) + &F-i, 

We write the same method in the initial coordinates, which can be done simply by 
multiplying the equations for yn” and sn by P, and writing pq = PI:=: 

xn+i = xn + anpn, n=iv,iv+i, . ..) 2N-1, 

P n = -P1P,‘f(s”) + &p+-i, 

an:f(P + anpn)= T.of(xa + UP”), 

pn=’ 
(PiPl’f/(Z”),fl(q- f’(,Y) 

(PiP,‘fl(5n-“),f’(gR-‘)) ’ 
n#N, pN=0. 
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If, after every N iterations, the same process is repeated, we final& obtain the 
followi~ compu~tion~ scheme: 

xnfi = 5% + anpn, 

P n = -Skfl(X”) + BtlPn--i, n= kN+i, O<i<R 

on:f(xn f a#)= min f(sn + up), 
CC>0 

(12) 

- 1, 

i 

(s,l”(xn),f’(xn)--f/(xn-*)) 
pn = (s,f(x~-~),f(x+---’ n# ICN, 

I 0, n=kiV, 

Sk = PkPkf, so = I. 

Here, P, is an N x N matrix, the 6th column of which is p” = Ynnpn f (Skjf 

(P) , f’(xn) ) ‘h, n =i kiV + i, and I is the unit matrix. 

Notice some features of the proposed method. First, if f(z) = i/z&4x, z) 

- (b, ~1, we obtain in the non-degenerate case (i.e. when PR # 0, n = 0, 

. * ., N - 1) s, = P&’ = A-’ = [j”(X) 3-i (see the Note in 

Section 1). In the case of a non-quadratic functional, the matrix S, $11 thus be 
close to [~“(xO)]-~. Further, while we apply the conjugate gradient method to 
the fiction $fy), it may easily be verified that ~~(~~ = ~~*~(~)PI. Since 

P;’ exists by hypothesis, the matrix ql”(y) must have the same eigenvalues as 

PIP,‘f” (5) = &Y(Z). But the latter matrix is close to the unit matrix when 

x is close to x0. In short, the second cycle of the conjugate gradient method is 
~rforrn~ for a fictional whose matrix of seco,nd derivatives is well-posed. As 
may be seen from the convergence proofs given in Section 2, the rate of conver 
genes is greater, the closer the numbers m and M (i.e. the better the second 
derivatives are stipulated). Similarly, in later cycles the matrix S, becomes a 
better and better approximation for [r”(x) ‘J-1, so that further acceleration of 

the convergence can be expected. 

The method just described has features similar to that given in [lo], in 
which the matrix [r” (5) I-’ is likewise obtained by an iterative method. But 
the compu~tio~ scheme in El01 is more unwieldy, and what is more ~~~~t, 
the convergence is slower, since the method of steepest descent is employed in 
its coordinate transformations, while in our algorithm the conjugate gradient 
method is used in the new coordinates. 
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4. Constrained Problems 

Notice first that the conjugate gradient method can be extended immediately 
to the case of minimizing f(x) on a linear subspace L, provided we replace f’ (x1 
throughout the expressions by the projection PLf’ (x) of the gradient on L. All 

the convergence theorems remain in force (in particular, if f(x) is quadratic and 

finite-dimensional, the method is finite). 

Now take the problem of minimizing a quadratic finite-dimensional function 

f(x) under the constraint x E Q, where Q = {z: US < xi G b,,’ i = 1, . . . , 

N) (some ai and bi may be equal to + a, ). We shall show that the conjugate 
gradient method can also be extended to this case, in such a way that it remains 
finite. We introduce 
consider the method 

two sets of indices Ii and Ii, write I,, = I,- IJ I,+ and 

xn-ti = xn + anpn, (13) 

Pin = I 8f (x”) - 7 + f3n Pin+, i@ I,, 
2 

i E I,, 

a,: f (xn + u,pQ) = min. f (5” + ap9, 
o<aGan 

an = max {a: ai < xin + apin < bi, i = 1, . . . , N}, 

1 
-)J (V (x9 / axi)* 

iQ I, 

pn = %g (af (x”-1) / axA2 ’ 
n#O, 1, = In-17 

n 

I 09 n=O 1% # I,-1, 

’ {i:Xin=ai, af(5ymi>0}, n=O 

I 
a/ (xy / axi = 0 

I; = i@r,, 

I,_, U {i : xin = ui} 

f {i : Tin = bi, af(X”)/dXi<O}y nzo af (xn) / axi = 0 

I,’ = 1 iG!GJInr 
I~_jU{i:Xi”=bi} 

Theorem 4 

If f(x) is convex and attains its minimum on Q, method (13) is finite: xn = x* 
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for some n. 

Proof. We shall show that an instant arrives when Lo/ I Lkri= 0 for all 

i@ I,. In fact, till this happens, the set I, is merely widened: I, 3 I,-1. 
But this widening cannot go on indefinitely, so that, as from a certain instant, 
I, = I,-]. It then follows from the expressions of the method that we shall be 

applying the conjugate gradient method in a subspace xi = ai, i E I,-, xi = bi, 

i E I,+. But this method is finite, so that the minimum in this subspace will 

be found after a finite number of steps. It will then turn out that af (P) / 8~ = 0 

for all i@ I,. Every time, therefore, we arrive after a finite number of steps at 
the minimum point in some subspace. Further, we transform to a new subspace 
(the upper line in the definitions of I,-, In+). Since the method is monotonic 
f (xn+l ) d f(xn)7 we shall never arrive twice in the same subspace. Since 

the total number of subspaces is finite, the method must also be finite. It is 
clear from the expressions for the method that the necessary and sufficient 
conditions for a minimum of f(x) in Q must be satisfied at a point of the last subspace 

This theorem suggests a simple means for solving a set of linear inequalities 
in finite-dimensional space. For, let the set of inequalities be Az = b, I > 0, 

so that we have to minimize the quadratic functional f (5) = llAz - b112 ,in Q = 

{z: z 2 0). We use themethod (13). It follows from Theorem 4 that this method, 
while iterative in form (and possessing all the merits of iterative methods), enables 
the solution to be found after a finite number of steps. 

Since a problem of linear programming may be reduced by various means to the 
solution of linear inequalities, we have incidentally obtained a method for solving 
problems of linear programming. 

Further, the general problem of quadratic programming min (CZ, z) - (d, z), 

Az < b may be reduced by the duality theorem to minimizing the quadratic 

function v(y) = (Gy, y) - (h, y), G = ‘/4AC-‘4 h = ‘/2AC-‘d + b, 

under simple constraints y > 0. Our method may be employed for this latter 
problem (and is much more economic than the Hildreth and d’Esope method for 
solving the dual problem, see 1111, Chapter Vl. 

Finally, the method (131 may also be used for minimizing a non-quadratic 
function f(x) under constraints ai S zi & bi, i = 1, . . . , N. Here, /3, have to 
be evaluated from (ll), while the condition df (xn) / &xi = 0, i@ I,, must be 
replaced by some condition under which these derivatives are small. 
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Another way of utilizing the conjugate gradient method in problems of non 
linear programming is given in 1121. In this method, sn auxiliary problem of linear 
programming is solved at each step. 

Finally, the conjugate gradient method may be used in conjunction with any 
~gori~ for solving general extremal problems under constraints, in which the 
problem is reduced to a sequence of unconstrained extremum problems. For 
instance, there is the method of penalty functions, or the method of selecting 
Lagrange multipliers with subsequent minimization of the Lagrange function. It 
only needs to be borne in mind that the conjugate gradient method is only effective 
for reasonably smooth ~ctions~ so that the penalty function must be reasonably 
smooth. In particular, the penalty function Kg+2 (5) , g+(z) = max (0, g (cc) } , 

employed for replacing the constraint g(x) & 0, is of little use, since it is not 
twice differentiable. 

5. Numerical Results 

The conjugate gradient method was employed systematically in its standard 
and modified forms at the Computational Cenlre of Moscow University to solve 
a variety of extremal problems. Some results will be briefly described. 

1. Unconstrained minimization problems for functions of many variables. 
In all the examples considered, the conjugate gradient method was much more 
rapidly convergent than gradient methods (which often stopped in practice a long 
way from the m~imum). In most cases the modified version (11) gave rather 
better results than (9). To indicate the effectiveness of the method, we shall 
quote a typical example with 50 variables: 

This is the discrete version of the familiar brachistocbrone problem. For the 
initial approximation, f($) - f(S) = 0.21, 1(z?- ?I\ = 4.0. After 370 

i~rations the conjugate gradient method gave an app~x~ation in which all 9 
places were correct for f(x) and 8 places for xi. Here, 1508 gradient computations 
were required. The results with the same number of iterations in the method of 
steepest descent are, for comparison: f(x”) - f(Y) = 0.13, JIP -x*11 = 3.5 

and for the simple gradient method: f (2%) - f (z*) = 0.09, 11~ - X* iI =_ 3.0. 

In the majority of problems, the conjugate gradient method is quite rapidly 
convergent and acceleration of the convergence rate is unnecessary. An example 
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of a function of quite a small number of variables, where the method (12) was 
required, is 

f(z)= A-2 i (A@.Zj + 2Ae-W - qe-0.2jx2 - ~,e-@.2jx4)2, 

j=i 

When A = 1, 640 iterations were needed, in order to obtain 

](CrY) - f(z*) = 0.5*10-13, l/P - x*11 = 0.2 ’ IO-4 

(when f(ti) - f(Y) = 0.5, 11ti - x*(1 = 1.7). At the same time, after only 50 

iterations of method (121, we had f(zn) - f(z”) < 10-*g, IIP - 911 = 10”. 

When A = 1000, the conjugate gradient method is not practicable. The fact is that 
the orders of the derivatives with respect to the different variables are sharply 
different in this problem. In view of this, the size of an varies widely from step 

to step and its selection from condition (8) becomes a difficult problem. In the 
method (I.21, an can be shown to be always of the order of unity (for reasonably 
smooth unctions). Hence method (12) is applicable even when A = 1000, and 
after 240 iterations, gives f(m) - f(z”) < zIO+-*~, 11~ - s*II = 0.5.10-5. 
It must be mentioned that, when N > 10, it is often more slowly convergent than 
the conjugate gradient method. 

Two standard programs for the M-20 computer were devised by V. V. Skokov. 
The first realized the method (l), (21, (8) and (ll), when N 4 620; the second 
realized method (12), when N 4 50. To use these programs, it is only necessary 

to specify a subprogram for computing f’ (x1. 

2. Problems of linear and quadratic programming. The problem 

min(c,s)+(Az,s), Bx=d, ~20, 

reduces by means of penalty fictions to 

min(c, ZC) + (As, 5) + KIIBx - dl12, 2 z a 

after which the method described in Section 4 can be employed 1131. Since this 
method requires no ~~sfo~ations of the initial matrices, and the latter are 
sparsely filled, it can be applied to problems with a large number of dimensions. 
The standard program for the BESM-4 computer devised by E. N. Belov enables 
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problems of linear programming to be solved with m + 2n < 1504, P & 4000 

(m is the number of equations, n the number of variables, and P the number of 

non-zero elements in the matrix). From 2 to 4 hours per problem were required 
when solving a variety of problems with m = 314, n = 505, P = 1000 

3. Optimal control problems. In the problem 

minf(u)= [F( ~,~J)d~+~(~(~))~ 
0 

dX 

-2-l 
= cp(X, 4 q, s(O)= c, a(t)< u(t) < h(t) 

the gradient can be written down without difficulty and the conjugate gradient 

method applied. A detailed description of the algorithm and computational 

results for several examples may be found in l’141. If the phase coordinates are 
constrained in the problem (in particular, if there is a condition on x (2’) ), the 

method of penalty functions can be used. If time T is not fixed, we can perform 
the transformation t -, r in accordance with dt = u (-c)dt, u (T) 2 0, 0 < ‘c < 1 

and take u (7) as the new control. 

4. Integral equations of the 1st kind. Solution of the equation 

i 

s K(s, t)x(s)ds = a(t) 

is replaced by minimization of the quadratic functional 

f(x)= f ( j K(s, t)x(s)ds - a(t) pt. 
0 0 

The resulting problem is incorrectly posed: not every minimizing sequence is 
convergent. A detailed numerical check on the conjugate gradient method for 
such problems was given in [El. It was found that, in spite of rounding errors, 
the method is stable and yields a convergent sequence. The choice of the 
metric of the space in which the minimization is performed has an important 
influence. For instance, if a fairly smooth solution exists, the method is much 
more rapidly convergent in space IV: than in L,. 

5. Partial differential variational problems. Many problems of mathematical 
physics may be stated in terms of variational principles. We can usually write 
down the gradient of the resulting functional, and then employ the conjugate 
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gradient method. Computational experience in one such problem is described in 

1161, namely, choice of the boundary condition for the equation of heat conduction, 

such that the least deviation from a given temperature state is obtained. 

TransZated by D. E. Brown 
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