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1 The Problem

Suppose there are N vectors in a p dimensional vector space. Each of these N
vectors belongs to either one of two classes C1 and C2. Our task is to find a
hyperplane to separate these vectors out based on the classes they belong to.

Figure 1: A hyperplane (or a line) which separates two-dimensional vectors into
two classes.

2 The Mathematical Description

Here we formulate the problem into a more mathematical form. Suppose x1,
x2, · · · , xN are p dimensional vectors. Let’s define their extended vectors, −→x1,−→x2, · · · , −→xN , as follows:

If xi ∈ C1, then −→xi =

[
xi

1

]
; if xi ∈ C2, then −→xi =

[
−xi

−1

]
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All extended vectors are p+ 1 dimensional. The problem has been changed
as finding a p+ 1 dimensional vector ω such that for each i = 1, 2, ..., N ,

ωT−→xi > 0

3 The Algorithm

The perceptron algorithm has been proposed by Frank Rosenblatt in 1956. It
is simple, but significant. The algorithm has preluded the area of machine
learning and pattern recognition. The procedure of the algorithm is shown in
Algorithm 1.

Input: −→x1,
−→x2, · · · , −→xN

Output: w

1 w =


0
0
...
0

;
2 FLAG = 1;
3 while FLAG do
4 FLAG = 0;
5 for i=1:N do
6 if ωT−→xi ≤ 0 then
7 ω = ω +−→xi ;
8 FLAG = 1

9 end

10 end

11 end
12 return ω;

Algorithm 1: The Perceptron Algorithm

4 The Proof of the Algorithm’s Convergence

Theorem 1 For N vectors −→x1,
−→x2, · · · , −→xN in the vector space, if there exists

an vector ωopt such that ωT
opt

−→xi > 0 for all i = {1, 2, ..., N}, then the per-
ceptron algorithm described in Algorithm 1 could finally find a vector ω such
that ωT−→xi > 0 for all i = {1, 2, ..., N}. The convergence does not depend on the
initial selection of ω.

Proof Without loss of generality, we suppose that ∥ωopt∥ = 1 (Think about
why we could make such an assumption).

We further define ω(k) as the ω at the kth iteration. Then there are two
cases:
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1. If ω(k)T−→xi > 0 for all i = {1, 2, ..., N}, the theorem has been proved.
2. Otherwise, there exists at least one i ∈ {1, 2, ..., N} which makes ω(k)T−→xi ≤ 0.

Then based on the perceptron algorithm,

ω(k + 1) = ω(k) +−→xi

, which means that

ω(k + 1)− aωopt = ω(k + 1)− aωopt + xi

Taking the module of each side, we obtain

∥ω(k + 1)− aωopt∥2

=∥ω(k)− aωopt +
−→xi∥2

=∥ω(k)− aωopt∥2 + ∥−→xi∥2 + 2ω(k)T−→xi − 2aωT
opt

−→xi

Here a is a positive number which we are going to discuss later. Because ω(k)T−→xi ≤ 0,
we can have:

∥ω(k + 1)− aωopt∥2

≤∥ω(k)− aωopt∥2 + ∥−→xi∥2 − 2aωT
opt

−→xi

Here we define β = maxNi=1 ∥
−→xi∥, and γ = minNi=1 (ω

T
opt

−→xi) (β > 0 and γ > 0,

why?). Then it is easy to prove that when a = β2+1
2γ ,

∥ω(k + 1)− aωopt∥2 ≤ ∥ω(k)− aωopt∥2 − 1 (1)

If we take a = β2+1
2γ , then ∥aωopt∥ = a = β2+1

2γ . Define the distance between the

initial vector ω(0) and aωopt as D = ∥ω(0)−aωopt∥. Based on Eqn (1), for each
iteration, the distance from ω to aωopt has been decreased at least 1, so for at
most D2 iterations, the vector ω will converge to aωopt.

Thus, we have finished the proof.
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