ubernetes
N ACTION

Marko Luk3a

/l’l MANNING


http://www.allitebooks.org

Kubernetes resources covered in the book

Resource (abbr.) [API version] Description Section
Namespace* (ns) [v1] Enables organizing resources into non-overlapping | 3.7
groups (for example, per tenant)
Pod (po) [v1] The basic deployable unit containing one or more | 3.1
processes in co-located containers
ReplicaSet (rs) [apps/vlbeta2**] Keeps one or more pod replicas running 4.3
(7]
] ReplicationController (rc) [v1] The older, less-powerful equivalent of a 4.2
_—; ReplicaSet
3
; Job [batch/v1] Runs pods that perform a completable task 4.5
o
'g. CronlJob [batch/vlbetal] Runs a scheduled job once or periodically 4.6
-
2 DaemonSet (ds) [apps/vlbeta2**] Runs one pod replica per node (on all nodes or 4.4
only on those matching a node selector)
StatefulSet (sts) [apps/vibetal**] Runs stateful pods with a stable identity 10.2
Deployment (deploy) [apps/vlbetal**] | Declarative deployment and updates of pods 9.3
Service (svc) [v1] Exposes one or more pods at a single and stable | 5.1
IP address and port pair
7]
_§ Endpoints (ep) [v1] Defines which pods (or other servers) are 5.2.1
° exposed through a service
n
Ingress (ing) [extensions/vlbetal] Exposes one or more services to external clients | 5.4
through a single externally reachable IP address
0 ConfigMap (cm) [v1] A key-value map for storing non-sensitive config 7.4
s options for apps and exposing it to them
o
o
Secret [v1] Like a ConfigMap, but for sensitive data 7.5
PersistentVolume* (pv) [v1] Points to persistent storage that can be mounted | 6.5
° into a pod through a PersistentVolumeClaim
oD
g PersistentVolumeClaim (pvc) [v1] A request for and claim to a PersistentVolume 6.5
o
n
StorageClass* (sc) [storage.k8s.io/vl] | Defines the type of dynamically-provisioned stor- | 6.6
age claimable in a PersistentVolumeClaim

* Cluster-level resource (not namespaced)

** Also in other API versions; listed version is the one used in this book

(continues on inside back cover)


http://www.allitebooks.org

Kubernetes in Action


http://www.allitebooks.org



http://www.allitebooks.org

Kubernetes
m Action

MARKO LUKSA

MANNING
SHELTER ISLAND


http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/I/I Manning Publications Co. Development editor: Elesha Hyde
20 Baldwin Road Review editor: Aleksandar Dragosavljevic
PO Box 761 Technical development editor: Jeanne Boyarsky
Shelter Island, NY 11964 Project editor: Kevin Sullivan

Copyeditor: Katie Petito
Proofreader: Melody Dolab
Technical proofreader: Antonio Magnaghi
Mustrator: Chuck Larson
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617293726
Printed in the United States of America
128345678910 -EBM - 22 21 20 19 18 17


www.manning.com
http://www.allitebooks.org

To my parents,
who have always put their children’s needs above their own


http://www.allitebooks.org



http://www.allitebooks.org

brief contents

PART 1 OVERVIEW

1 Introducing Kubernetes 1

2 First steps with Docker and Kubernetes 25

PART 2 CORE CONCEPTS

3 Pods: running containers in Kubernetes 55

4 Replication and other controllers: deploying
managed pods 84

5 Services: enabling clients to discover and talk
to pods 120

Volumes: attaching disk storage to containers 159
ConfigMaps and Secrets: configuring applications 191

Accessing pod metadata and other resources from
applications 225

9 Deployments: updating applications declaratively 250

10 StatefulSets: deploying replicated stateful
applications 280


http://www.allitebooks.org

BRIEF CONTENTS

PART 3 BEYOND THE BASICS

11
12
13
14
15
16
17
18

Understanding Kubernetes internals 309
Securing the Kubernetes API server 346
Securing cluster nodes and the network 375
Managing pods’ computational resources 404
Automatic scaling of pods and cluster nodes 437
Advanced scheduling 457

Best practices for developing apps 477
Extending Kubernetes 508


http://www.allitebooks.org

contents

preface  xxi

acknowledgments — xxiii

about this book  xxv

about the author  xxix

about the cover illustration  xxx

PART1 OVERVIEW

Introducing Kubernetes 1
1.1 Understanding the need for a system like Kubernetes 2

Moving from monolithic apps to microservices 3 = Providing a
consistent environment to applications 6 = Moving lo continuous
delivery: DevOps and NoOps 6

1.2 Introducing container technologies 7

Understanding what containers are 8 = Introducing the Docker
container platform 12 = Introducing rkt—an alternative to Docker 15

1.3 Introducing Kubernetes 16

Understanding its origins 16 = Looking at Kubernetes from the

top of a mountain 16 = Understanding the architecture of a
Kubernetes cluster 18 = Running an application in Kubernetes 19
Understanding the benefits of using Kubernetes 21

1.4 Summary 23



X CONTENTS

First steps with Docker and Kubernetes 25

2.1 Creating, running, and sharing a container image 26

Installing Docker and running a Hello World container 26
Creating a trivial Node.js app 28 = Creating a Dockerfile
Jor the image 29 = Building the container image 29
Running the container image 32 = Exploring the inside

of a running container 33 = Stopping and removing a
container 34 = Pushing the image to an image registry 35

2.2 Setting up a Kubernetes cluster 36

Running a local single-node Kubernetes cluster with Minikube 37
Using a hosted Kubernetes cluster with Google Kubernetes

Engine 38 = Setting up an alias and command-line completion
for kubectl 41

2.3 Running your first app on Kubernetes 42

Deploying your Node.js app 42 = Accessing your web
application 45 = The logical parts of your system 47
Horizontally scaling the application 48 = Examining what
nodes your app is running on 51 = Introducing the
Kubernetes dashboard 52

24 Summary 53

PART 2 CORE CONCEPTS

Pods: running containers in Kubernetes 55
3.1 Introducing pods 56

Understanding why we need pods 56 = Understanding pods 57
Organizing containers across pods properly 58

3.2 Creating pods from YAML or JSON descriptors 61

Examining a YAML descriptor of an existing pod 61 = Creating a
simple YAML descriptor for a pod 63 = Using kubectl create to
create the pod 65 = Viewing application logs 65 = Sending
requests to the pod 66

3.3 Organizing pods with labels 67

Introducing labels 68 = Specifying labels when creating a pod 69
Modifying labels of existing pods 70

3.4 Listing subsets of pods through label selectors 71

Listing pods using a label selector 71 = Using multiple conditions
m a label selector 72



CONTENTS xi

3.5 Using labels and selectors to constrain pod
scheduling 73

Using labels for categorizing worker nodes 74 = Scheduling pods to
specific nodes 74 = Scheduling to one specific node 75

3.6 Annotating pods 75

Looking up an object’s annotations 75 = Adding and modifying
annotations 76

3.7 Using namespaces to group resources 76

Understanding the need for namespaces 77 = Discovering other
namespaces and their pods 77 = Creating a namespace 78
Managing objects in other namespaces 79 = Understanding
the isolation provided by namespaces 79

3.8 Stopping and removing pods 80

Deleting a pod by name 80 = Deleting pods using label
selectors 80 = Deleting pods by deleting the whole
namespace 80 = Deleting all pods in a namespace,
while keeping the namespace 81 = Deleting (almost)
all resources in a namespace 82

3.9 Summary 82

Replication and other controllers: deploying managed pods 84

4.1 Keeping pods healthy 85

Introducing liveness probes 85 = Creating an HT'TP-based
liveness probe 86 = Seeing a liveness probe in action 87
Configuring additional properties of the liveness probe 88
Creating effective liveness probes 89

4.2 Introducing ReplicationControllers 90

The operation of a ReplicationController 91 = Creating a
ReplicationController 93 = Seeing the ReplicationController
in action 94 = Moving pods in and out of the scope of a
ReplicationController 98 = Changing the pod template 101
Horizontally scaling pods 102 = Deleting a
ReplicationController 103

4.3 Using ReplicaSets instead of ReplicationControllers 104

Comparing a ReplicaSet to a ReplicationController 105
Defining a ReplicaSet 105 = Creating and examining a
ReplicaSet 106 = Using the ReplicaSet’s more expressive
label selectors 107 = Wrapping up ReplicaSets 108



CONTENTS

4.4 Running exactly one pod on each node with
DaemonSets 108
Using a DaemonsSet to run a pod on every node 109
Using a DaemonsSet to run pods only on certain nodes 109
4.5 Running pods that perform a single completable
task 112

Introducing the Job resowrce 112 = Defining a Job resource 113
Seeing a_Job run a pod 114 = Running multiple pod instances
na fob 114 = Limiting the time allowed for a Job pod to
complete 116

4.6 Scheduling Jobs to run periodically or once
in the future 116
Creating a Cronfob 116 = Understanding how scheduled

jobs arerun 117

4.7 Summary 118

Services: enabling clients to discover and talk to pods 120

5.1 Introducing services 121

Creating services 122 = Discovering services 128

5.2 Connecting to services living outside the cluster 131

Introducing service endpoints 131 = Manually configuring
service endpoints 132 = Creating an alias for an external
service 134

5.3 Exposing services to external clients 134

Using a NodePort service 135 = Exposing a service through
an external load balancer 138 = Understanding the peculiarities
of external connections 141

5.4 Exposing services externally through an Ingress

resource 142

Creating an Ingress resource 144 = Accessing the service
through the Ingress 145 = Exposing multiple services
through the same Ingress 146 = Configuring Ingress to
handle TLS traffic 147

5.5  Signaling when a pod is ready to accept connections 149

Introducing readiness probes 149 = Adding a readiness probe
toapod 151 = Understanding what real-world readiness
probes should do 153



CONTENTS xiii

5.6 Using a headless service for discovering individual
pods 154

Creating a headless service 154 = Discovering pods
through DNS 155 = Discovering all pods—even those
that aren’t ready 156

5.7 Troubleshooting services 156
5.8 Summary 157

Volumes: attaching disk storage to containers 159

6.1 Introducing volumes 160

Explaining volumes in an example 160 = Introducing available
volume types 162

6.2 Using volumes to share data between containers 163

Using an emptyDir volume 163 = Using a Git repository as the
starting point for a volume 166

6.3 Accessing files on the worker node’s filesystem 169

Introducing the hostPath volume 169 = Examining system pods
that use hostPath volumes 170

6.4 Using persistent storage 171

Using a GCE Persistent Disk in a pod volume 171 = Using other
types of volumes with underlying persistent storage 174

6.5 Decoupling pods from the underlying storage
technology 176

Introducing PersistentVolumes and PersistentVolumeClaims 176
Creating a PersistentVolume 177 = Claiming a PersistentVolume
by creating a PersistentVolumeClaim 179 = Using a
PersistentVolumeClaim in a pod 181 = Understanding the
benefits of using PersistentVolumes and claims 182 = Recycling
PersistentVolumes 183

6.6 Dynamic provisioning of PersistentVolumes 184

Defining the available storage types through StorageClass
resources 185 = Requesting the storage class in a
PersistentVolumeClaim 185 = Dynamic provisioning
without specifying a storage class 187

6.7 Summary 190



CONTENTS

ConfigMaps and Secrets: configuring applications 191

7.1 Configuring containerized applications 191
7.2 Passing command-line arguments to containers 192

Defining the command and arguments in Docker 193
Overriding the command and arguments in Kubernetes 195

7.3 Setting environment variables for a container 196

Specifying environment variables in a container definition 197
Referring to other environment variables in a variable’s value 198
Understanding the drawback of hardcoding environment

variables 198

7.4 Decoupling configuration with a ConfigMap 198

Introducing ConfigMaps 198 = Creating a ConfigMap 200
Passing a ConfigMap entry to a container as an environment
variable 202 = Passing all entries of a ConfigMap as environment
variables at once 204 = Passing a ConfigMap entry as a
command-line argument 204 = Using a configMap volume to
expose ConfigMap entries as files 205 = Updating an app’s config
without having to restart the app 211

7.5 Using Secrets to pass sensitive data to containers 213

Introducing Secrets 214 = Introducing the default token

Secret 214 = Creating a Secret 216 = Comparing ConfigMaps
and Secrets 217 = Using the Secret in a pod 218
Understanding image pull Secrets 222

7.6 Summary 224

Accessing pod metadata and other resources from
applications 225

8.1 Passing metadata through the Downward API 226

Understanding the available metadata 226 = Exposing metadata
through environment variables 227 = Passing metadata through
files in a downwardAPI volume 230

8.2 Talking to the Kubernetes API server 233

Exploring the Kubernetes REST APl 234 = Talking to the API
server from within a pod 238 = Simplifying API server
communication with ambassador containers 243 = Using client
libraries to talk to the API server 246

8.3 Summary 249



CONTENTS

Deployments: updating applications declaratively 250

9.1 Updating applications running in pods 251
Deleting old pods and replacing them with new ones 252
Spinning wp new pods and then deleting the old ones 252

9.2 Performing an automatic rolling update with a
ReplicationController 254
Running the initial version of the app 254 = Performing a rolling
update with kubectl 256 = Understanding why kubectl rolling-
update is now obsolete 260

9.3 Using Deployments for updating apps declaratively 261

Creating a Deployment 262 = Updating a Deployment 264
Rolling back a deployment 268 = Controlling the rate of the
rollout 271 = Pausing the rollout process 273 = Blocking
rollouts of bad versions 274

9.4 Summary 279

StatefulSets: deploying replicated stateful applications 280
10.1 Replicating stateful pods 281

Running multiple replicas with separate storage for each 281
Providing a stable identity for each pod 282
10.2  Understanding StatefulSets 284

Comparing StatefulSets with ReplicaSets 284 = Providing a
stable network identity 285 = Providing stable dedicated storage
to each stateful instance 287 = Understanding StatefulSet
guarantees 289

10.3  Using a StatefulSet 290

Creating the app and container image 290 = Deploying the app

through a StatefulSet 291 = Playing with your pods 295
10.4 Discovering peers in a StatefulSet 299

Implementing peer discovery through DNS 301 = Updating a

StatefulSet 302 = Trying out your clustered data store 303
10.5 Understanding how StatefulSets deal with node

failures 304

Simulating a node’s disconnection from the network 304
Deleting the pod manually 306

10.6  Summary 307



Xvi CONTENTS

PART 3 BEYOND THE BASICS

Understanding Kubernetes internals 309

11.1  Understanding the architecture 310

The distributed nature of Kubernetes components 310
How Kuberneles uses etcd 312 = What the API server does 316
Understanding how the API server notifies clients of resource
changes 318 = Understanding the Scheduler 319
Introducing the controllers running in the Controller Manager 321
What the Kubelet does 326 = The role of the Kubernetes Service
Proxy 327 = Introducing Kubernetes add-ons 328 = Bringingit
all together 330

11.2  How controllers cooperate 330
Understanding which components are involved 330 = The chain
of events 331 = Observing cluster events 332

11.3 Understanding what a running pod is 333
11.4 Inter-pod networking 335
What the network must be like 335 = Diving deeper into

how networking works 336 = Introducing the Container
Network Interface 338
11.5  How services are implemented 338

Introducing the kube-proxy 339 = How kube-proxy uses iptables 339

11.6  Running highly available clusters 341

Making your apps highly available 341 = Making Kubernetes
Control Plane components highly available 342

11.7  Summary 345

Securing the Kubernetes API server 346
12.1 Understanding authentication 346

Users and groups 347 = Introducing ServiceAccounts 348
Creating ServiceAccounts 349 = Assigning a ServiceAccount

toapod 351

12.2  Securing the cluster with role-based access control 353

Introducing the RBAC authorization plugin 353 = Introducing
RBAC resources 355 = Using Roles and RoleBindings 358
Using ClusterRoles and ClusterRoleBindings 362

Understanding default ClusterRoles and ClusterRoleBindings 371
Granting authorization permissions wisely 373

12.3 Summary 373



CONTENTS

Securing cluster nodes and the network 375
13.1 Using the host node’s namespaces in a pod 376

Using the node’s network namespace in a pod 376 = Binding to
a host port without using the host’s network namespace 377
Using the node’s PID and IPC namespaces 379

13.2  Configuring the container’s security context 380

Running a container as a specific user 381 = Preventing a
container from running as root 382 = Running pods in
privileged mode 382 = Adding individual kernel capabilities

lo a container 384 = Dropping capabilities from a container 385
Preventing processes from writing to the container’s filesystem 386
Sharing volumes when containers run as different users 387

13.3  Restricting the use of security-related features
in pods 389

Introducing the PodSecurityPolicy resource 389 = Understanding
runAsUser, fsGroup, and supplementalGroups policies 392
Configuring allowed, default, and disallowed capabilities 394
Constraining the types of volumes pods can use 395 = Assigning
different PodSecurityPolicies to different users and groups 396

13.4 Isolating the pod network 399

Enabling network isolation in a namespace 399 = Allowing
only some pods in the namespace to connect to a server pod 400
Isolating the network between Kubernetes namespaces 401
Isolating using CIDR notation 402 = Limiting the outbound
traffic of a set of pods 403

13.5 Summary 403

Managing pods’ computational resources 404
14.1 Requesting resources for a pod’s containers 405

Creating pods with resource requests 405 = Understanding how
resource requests affect scheduling 406 = Understanding how CPU
requests affect CPU time sharing 411 = Defining and requesting
custom resources 411

14.2  Limiting resources available to a container 412

Setting a hard limit for the amount of resources a container
can use 412 = Exceeding the limits 414 = Understanding
how apps in containers see limits 415

14.3 Understanding pod QoS classes 417

Defining the QoS class for a pod 417 = Understanding which
process gels killed when memory is low 420



xviii CONTENTS
14.4 Setting default requests and limits for pods per

namespace 421
Introducing the LimitRange resource 421 = Creating a
LimitRange object 422 = Enforcing the limits 423
Applying default resource requests and limits 424

14.5 Limiting the total resources available in

anamespace 425

Introducing the ResourceQuota object 425 = Specifying a quota
Jor persistent storage 427 = Limiting the number of objects that can

be created 427 = Specifying quotas for specific pod states and/or
QoS classes 429

14.6  Monitoring pod resource usage 430
Collecting and retrieving actual resource usages 430 = Storing
and analyzing historical resource consumption statistics 432

14.7  Summary 435

Automatic scaling of pods and cluster nodes 437

15.1 Horizontal pod autoscaling 438

Understanding the autoscaling process 438 = Scaling based
on CPU utilization 441 = Scaling based on memory
consumption 448 = Scaling based on other and custom
melrics 448 = Determining which melrics are appropriate for
autoscaling 450 = Scaling down to zero replicas 450

15.2  Vertical pod autoscaling 451
Automatically configuring resource requests 451 = Modifying
resource requests while a pod is running 451

15.3 Horizontal scaling of cluster nodes 452

Introducing the Cluster Autoscaler 452 = Enabling the Cluster
Autoscaler 454 = Limiting service disruption during cluster
scale-down 454

15.4 Summary 456

Advanced scheduling 457

16.1 Using taints and tolerations to repel pods from certain
nodes 457

Introducing taints and tolerations 458 = Adding custom taints to
anode 460 = Adding tolerations to pods 460 = Understanding
what taints and tolerations can be used for 461


http://www.allitebooks.org

CONTENTS

16.2  Using node affinity to attract pods to certain nodes 462

Specifying hard node affinity rules 463 = Prioritizing nodes when
scheduling a pod 465

16.3 Co-locating pods with pod affinity and anti-affinity 468

Using inter-pod affinity to deploy pods on the same node 468
Deploying pods in the same rack, availability zone, or geographic
region 471 = Expressing pod affinity preferences instead of hard
requirements 472 = Scheduling pods away from each other with
pod anti-affinity 474

16.4 Summary 476

Best practices for developing apps 477

17.1 Bringing everything together 478
17.2  Understanding the pod’s lifecycle 479

Applications must expect to be killed and relocated 479
Rescheduling of dead or partially dead pods 482 = Starting
pods in a specific order 483 = Adding lifecycle hooks 485
Understanding pod shutdown 489

17.3 Ensuring all client requests are handled properly 492

Preventing broken client connections when a pod is starting up 492
Preventing broken connections during pod shut-down 493

17.4 Making your apps easy to run and manage in
Kubernetes 497

Making manageable container images 497 = Properly

tagging your images and using imagePullPolicy wisely 497
Using multi-dimensional instead of single-dimensional labels 498
Describing each resource through annotations 498 = Providing
information on why the process terminated 498 = Handling
application logs 500

17.5 Best practices for development and testing 502

Running apps outside of Kubernetes during development 502
Using Minikube in development 503 = Versioning and auto-
deploying resource manifests 504 = Introducing Ksonnet as an
alternative to writing YAML/JSON manifests 505 = Employing
Continuous Integration and Continuous Delivery (CI/CD) 506

17.6  Summary 506



CONTENTS

Extending Kubernetes 508

18.1

18.2

18.3

18.4

appendix A
appendix B
appendix C
appendix D

Defining custom API objects 508

Introducing CustomResourceDefinitions 509 = Automating
custom resources with custom controllers 513 = Validating
custom objects 517 = Providing a custom API server for your
custom objects 518

Extending Kubernetes with the Kubernetes Service

Catalog 519

Introducing the Service Catalog 520 = Introducing the
Service Catalog API server and Controller Manager 521
Introducing Service Brokers and the OpenServiceBroker APl 522
Provisioning and using a service 524 = Unbinding and
deprovisioning 526 = Understanding what the Service
Catalog brings 526

Platforms built on top of Kubernetes 527
Red Hat OpenShift Container Platform 527 = Deis Workflow
and Helm 530

Summary 533

Using kubectl with multiple clusters 534

Setting up a multi-node cluster with kubeadm 539
Using other container runtimes 552

Cluster Federation 556

index 561



preface

After working at Red Hat for a few years, in late 2014 I was assigned to a newly-
established team called Cloud Enablement. Our task was to bring the company’s
range of middleware products to the OpenShift Container Platform, which was then
being developed on top of Kubernetes. At that time, Kubernetes was still in its
infancy—version 1.0 hadn’t even been released yet.

Our team had to get to know the ins and outs of Kubernetes quickly to set a proper
direction for our software and take advantage of everything Kubernetes had to offer.
When faced with a problem, it was hard for us to tell if we were doing things wrong or
merely hitting one of the early Kubernetes bugs.

Both Kubernetes and my understanding of it have come a long way since then.
When I first started using it, most people hadn’t even heard of Kubernetes. Now, virtu-
ally every software engineer knows about it, and it has become one of the fastest-
growing and most-widely-adopted ways of running applications in both the cloud and
on-premises datacenters.

In my first month of dealing with Kubernetes, I wrote a two-part blog post about
how to run a JBoss WildFly application server cluster in OpenShift/Kubernetes. At the
time, I never could have imagined that a simple blog post would ultimately lead the
people at Manning to contact me about whether I would like to write a book about
Kubernetes. Of course, I couldn’t say no to such an offer, even though I was sure
they’d approached other people as well and would ultimately pick someone else.

And yet, here we are. After more than a year and a half of writing and researching,
the book is done. It’s been an awesome journey. Writing a book about a technology is



xxii

PREFACE

absolutely the best way to get to know it in much greater detail than you’d learn as just
a user. As my knowledge of Kubernetes has expanded during the process and Kuber-
netes itself has evolved, I've constantly gone back to previous chapters I've written and
added additional information. I'm a perfectionist, so I'll never really be absolutely sat-
isfied with the book, but I'm happy to hear that a lot of readers of the Manning Early
Access Program (MEAP) have found it to be a great guide to Kubernetes.

My aim is to get the reader to understand the technology itself and teach them
how to use the tooling to effectively and efficiently develop and deploy apps to Kuber-
netes clusters. In the book, I don’t put much emphasis on how to actually set up and
maintain a proper highly available Kubernetes cluster, but the last part should give
readers a very solid understanding of what such a cluster consists of and should allow
them to easily comprehend additional resources that deal with this subject.

I hope you’ll enjoy reading it, and that it teaches you how to get the most out of
the awesome system that is Kubernetes.



acknowledgments

Before I started writing this book, I had no clue how many people would be involved
in bringing it from a rough manuscript to a published piece of work. This means
there are a lot of people to thank.

First, I'd like to thank Erin Twohey for approaching me about writing this book,
and Michael Stephens from Manning, who had full confidence in my ability to write it
from day one. His words of encouragement early on really motivated me and kept me
motivated throughout the last year and a half.

I would also like to thank my initial development editor Andrew Warren, who
helped me get my first chapter out the door, and Elesha Hyde, who took over from
Andrew and worked with me all the way to the last chapter. Thank you for bearing
with me, even though I'm a difficult person to deal with, as I tend to drop off the
radar fairly regularly.

I would also like to thank Jeanne Boyarsky, who was the first reviewer to read and
comment on my chapters while I was writing them. Jeanne and Elesha were instrumen-
tal in making the book as nice as it hopefully is. Without their comments, the book
could never have received such good reviews from external reviewers and readers.

I’d like to thank my technical proofreader, Antonio Magnaghi, and of course all
my external reviewers: Al Krinker, Alessandro Campeis, Alexander Myltsev, Csaba Sari,
David DiMaria, Elias Rangel, Erisk Zelenka, Fabrizio Cucci, Jared Duncan, Keith
Donaldson, Michael Bright, Paolo Antinori, Peter Perlepes, and Tiklu Ganguly. Their
positive comments kept me going at times when I worried my writing was utterly awful
and completely useless. On the other hand, their constructive criticism helped improve

xxiii



XXiv

ACKNOWLEDGMENTS

sections that I'd quickly thrown together without enough effort. Thank you for point-
ing out the hard-to-understand sections and suggesting ways of improving the book.
Also, thank you for asking the right questions, which made me realize I was wrong
about two or three things in the initial versions of the manuscript.

I also need to thank readers who bought the early version of the book through
Manning’s MEAP program and voiced their comments in the online forum or reached
out to me directly—especially Vimal Kansal, Paolo Patierno, and Roland Hul3, who
noticed quite a few inconsistencies and other mistakes. And I would like to thank
everyone at Manning who has been involved in getting this book published. Before I
finish, I also need to thank my colleague and high school friend Ales Justin, who
brought me to Red Hat, and my wonderful colleagues from the Cloud Enablement
team. If I hadn’t been at Red Hat or in the team, I wouldn’t have been the one to write
this book.

Lastly, I would like to thank my wife and my son, who were way too understanding
and supportive over the last 18 months, while I was locked in my office instead of
spending time with them.

Thank you all!



about this book

Kuberneles in Action aims to make you a proficient user of Kubernetes. It teaches you
virtually all the concepts you need to understand to effectively develop and run appli-
cations in a Kubernetes environment.

Before diving into Kubernetes, the book gives an overview of container technolo-
gies like Docker, including how to build containers, so that even readers who haven’t
used these technologies before can get up and running. It then slowly guides you
through most of what you need to know about Kubernetes—from basic concepts to
things hidden below the surface.

Who should read this book

The book focuses primarily on application developers, but it also provides an overview
of managing applications from the operational perspective. It’s meant for anyone
interested in running and managing containerized applications on more than just a
single server.

Both beginner and advanced software engineers who want to learn about con-
tainer technologies and orchestrating multiple related containers at scale will gain the
expertise necessary to develop, containerize, and run their applications in a Kuberne-
tes environment.

No previous exposure to either container technologies or Kubernetes is required.
The book explains the subject matter in a progressively detailed manner, and doesn’t
use any application source code that would be too hard for non-expert developers to
understand.

XXV



ABOUT THIS BOOK

Readers, however, should have at least a basic knowledge of programming, com-
puter networking, and running basic commands in Linux, and an understanding of
well-known computer protocols like HTTP.

How this book is organized: a roadmap
This book has three parts that cover 18 chapters.

Part 1 gives a short introduction to Docker and Kubernetes, how to set up a Kuber-
netes cluster, and how to run a simple application in it. It contains two chapters:

Chapter 1 explains what Kubernetes is, how it came to be, and how it helps to
solve today’s problems of managing applications at scale.

Chapter 2 is a hands-on tutorial on how to build a container image and run it in
a Kubernetes cluster. It also explains how to run a local single-node Kubernetes
cluster and a proper multi-node cluster in the cloud.

Part 2 introduces the key concepts you must understand to run applications in Kuber-
netes. The chapters are as follows:

Chapter 3 introduces the fundamental building block in Kubernetes—the pod—
and explains how to organize pods and other Kubernetes objects through labels.

Chapter 4 teaches you how Kubernetes keeps applications healthy by automati-
cally restarting containers. It also shows how to properly run managed pods,
horizontally scale them, make them resistant to failures of cluster nodes, and
run them at a predefined time in the future or periodically.

Chapter 5 shows how pods can expose the service they provide to clients run-
ning both inside and outside the cluster. It also shows how pods running in the
cluster can discover and access services, regardless of whether they live in or out
of the cluster.

Chapter 6 explains how multiple containers running in the same pod can share
files and how you can manage persistent storage and make it accessible to pods.

Chapter 7 shows how to pass configuration data and sensitive information like
credentials to apps running inside pods.

Chapter 8 describes how applications can get information about the Kuberne-
tes environment they’re running in and how they can talk to Kubernetes to
alter the state of the cluster.

Chapter 9 introduces the concept of a Deployment and explains the proper way
of running and updating applications in a Kubernetes environment.

Chapter 10 introduces a dedicated way of running stateful applications, which
usually require a stable identity and state.

Part 3 dives deep into the internals of a Kubernetes cluster, introduces some addi-
tional concepts, and reviews everything you’ve learned in the first two parts from a
higher perspective. This is the last group of chapters:

Chapter 11 goes beneath the surface of Kubernetes and explains all the compo-
nents that make up a Kubernetes cluster and what each of them does. It also



ABOUT THIS BOOK XXVii

explains how pods communicate through the network and how services per-
form load balancing across multiple pods.

Chapter 12 explains how to secure your Kubernetes API server, and by exten-
sion the cluster, using authentication and authorization.

Chapter 13 teaches you how pods can access the node’s resources and how a
cluster administrator can prevent pods from doing that.

Chapter 14 dives into constraining the computational resources each applica-
tion is allowed to consume, configuring the applications’ Quality of Service
guarantees, and monitoring the resource usage of individual applications. It
also teaches you how to prevent users from consuming too many resources.
Chapter 15 discusses how Kubernetes can be configured to automatically scale
the number of running replicas of your application, and how it can also increase
the size of your cluster when your current number of cluster nodes can’t accept
any additional applications.

Chapter 16 shows how to ensure pods are scheduled only to certain nodes or
how to prevent them from being scheduled to others. It also shows how to make
sure pods are scheduled together or how to prevent that from happening.
Chapter 17 teaches you how you should develop your applications to make them
good citizens of your cluster. It also gives you a few pointers on how to set up your
development and testing workflows to reduce friction during development.
Chapter 18 shows you how you can extend Kubernetes with your own custom
objects and how others have done it and created enterprise-class application
platforms.

As you progress through these chapters, you’ll not only learn about the individual
Kubernetes building blocks, but also progressively improve your knowledge of using
the kubectl command-line tool.

About the code

While this book doesn’t contain a lot of actual source code, it does contain a lot of
manifests of Kubernetes resources in YAML format and shell commands along with
their outputs. All of this is formatted in a fixed-width font like this to separate it
from ordinary text.

Shell commands are mostly in bold, to clearly separate them from their output, but
sometimes only the most important parts of the command or parts of the command’s
output are in bold for emphasis. In most cases, the command output has been reformat-
ted to make it fit into the limited space in the book. Also, because the Kubernetes CLI
tool kubectl is constantly evolving, newer versions may print out more information
than what’s shown in the book. Don’t be confused if they don’t match exactly.

Listings sometimes include a line-continuation marker (**) to show that a line of
text wraps to the next line. They also include annotations, which highlight and explain
the most important parts.



ABOUT THIS BOOK

Within text paragraphs, some very common elements such as Pod, Replication-
Controller, ReplicaSet, DaemonSet, and so forth are set in regular font to avoid over-
proliferation of code font and help readability. In some places, “Pod” is capitalized
to refer to the Pod resource, and lowercased to refer to the actual group of running
containers.

All the samples in the book have been tested with Kubernetes version 1.8 running
in Google Kubernetes Engine and in a local cluster run with Minikube. The complete
source code and YAML manifests can be found at https://github.com/luksa/kubernetes-
in-action or downloaded from the publisher’s website at www.manning.com/books/
kubernetes-in-action.

Book forum

Purchase of Kubernetes in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/kubernetes-in-action. You can also
learn more about Manning’s forums and the rules of conduct at https://forums
.manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources

You can find a wide range of additional Kubernetes resources at the following locations:

The Kubernetes website at https://kubernetes.io

The Kubernetes Blog, which regularly posts interesting info (http://blog.kuber-
netes.io)

The Kubernetes community’s Slack channel at http://slack.k8s.io

The Kubernetes and Cloud Native Computing Foundation’s YouTube channels:
— https://www.youtube.com/channel/UCZ2bu0qutTOMOtHYa_jkIwg

— https://www.youtube.com/channel/UCvgbFHwN-nwal WPjPUKpvTA

To gain a deeper understanding of individual topics or even to help contribute to
Kubernetes, you can also check out any of the Kubernetes Special Interest Groups (SIGs)
at https://github.com/kubernetes/kubernetes/wiki/Special-Interest-Groups-(SIGs).

And, finally, as Kubernetes is open source, there’s a wealth of information available
in the Kubernetes source code itself. You’ll find it at https://github.com/kubernetes/
kubernetes and related repositories.


http://www.manning.com/books/kubernetes-in-action
http://www.manning.com/books/kubernetes-in-action
https://forums.manning.com/forums/kubernetes-in-action
https://github.com/luksa/kubernetes-in-action
https://github.com/luksa/kubernetes-in-action
https://kubernetes.io
http://blog.kubernetes.io
http://blog.kubernetes.io
http://slack.k8s.io
https://www.youtube.com/channel/UCZ2bu0qutTOM0tHYa_jkIwg
https://www.youtube.com/channel/UCvqbFHwN-nwalWPjPUKpvTA
https://github.com/kubernetes/kubernetes/wiki/Special-Interest-Groups-(SIGs)
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

about the author

Marko Luksa is a software engineer with more than 20 years of
professional experience developing everything from simple
web applications to full ERP systems, frameworks, and middle-
ware software. He took his first steps in programming back in
1985, at the age of six, on a second-hand ZX Spectrum com-
puter his father had bought for him. In primary school, he was
the national champion in the Logo programming competition
and attended summer coding camps, where he learned to pro-
gram in Pascal. Since then, he has developed software in a
wide range of programming languages.

In high school, he started building dynamic websites when
the web was still relatively young. He then moved on to developing software for the
healthcare and telecommunications industries at a local company, while studying
computer science at the University of Ljubljana, Slovenia. Eventually, he ended up
working for Red Hat, initially developing an open source implementation of the Goo-
gle App Engine API, which utilized Red Hat’s JBoss middleware products underneath.
He also worked in or contributed to projects like CDI/Weld, Infinispan/JBoss Data-
Grid, and others.

Since late 2014, he has been part of Red Hat’s Cloud Enablement team, where his
responsibilities include staying up-to-date on new developments in Kubernetes and
related technologies and ensuring the company’s middleware software utilizes the fea-
tures of Kubernetes and OpenShift to their full potential.




about the cover illustration

The figure on the cover of Kubernetes in Actionis a “Member of the Divan,” the Turkish
Council of State or governing body. The illustration is taken from a collection of cos-
tumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old
Bond Street, London. The title page is missing from the collection and we have been
unable to track it down to date. The book’s table of contents identifies the figures in
both English and French, and each illustration bears the names of two artists who
worked on it, both of whom would no doubt be surprised to find their art gracing the
front cover of a computer programming book ... 200 years later.

The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor didn’t have on his person the substantial amount of cash
that was required for the purchase, and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening, the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller proposed that the
money be transferred to him by wire, and the editor walked out with the bank infor-
mation on a piece of paper and the portfolio of images under his arm. Needless to say,
we transferred the funds the next day, and we remain grateful and impressed by this
unknown person’s trust in one of us. It recalls something that might have happened a
long time ago. We at Manning celebrate the inventiveness, the initiative, and, yes, the
fun of the computer business with book covers based on the rich diversity of regional
life of two centuries ago, brought back to life by the pictures from this collection.



Introducing Kubernetes

This chapter covers

Understanding how software development and
deployment has changed over recent years
Isolating applications and reducing environment
differences using containers

Understanding how containers and Docker are
used by Kubernetes

Making developers’ and sysadmins’ jobs easier
with Kubernetes

Years ago, most software applications were big monoliths, running either as a single
process or as a small number of processes spread across a handful of servers. These
legacy systems are still widespread today. They have slow release cycles and are
updated relatively infrequently. At the end of every release cycle, developers pack-
age up the whole system and hand it over to the ops team, who then deploys and
monitors it. In case of hardware failures, the ops team manually migrates it to the
remaining healthy servers.

Today, these big monolithic legacy applications are slowly being broken down
into smaller, independently running components called microservices. Because



1.1

CHAPTER 1 Introducing Kubernetes

microservices are decoupled from each other, they can be developed, deployed, updated,
and scaled individually. This enables you to change components quickly and as often as
necessary to keep up with today’s rapidly changing business requirements.

But with bigger numbers of deployable components and increasingly larger data-
centers, it becomes increasingly difficult to configure, manage, and keep the whole
system running smoothly. It’s much harder to figure out where to put each of those
components to achieve high resource utilization and thereby keep the hardware costs
down. Doing all this manually is hard work. We need automation, which includes
automatic scheduling of those components to our servers, automatic configuration,
supervision, and failure-handling. This is where Kubernetes comes in.

Kubernetes enables developers to deploy their applications themselves and as
often as they want, without requiring any assistance from the operations (ops) team.
But Kubernetes doesn’t benefit only developers. It also helps the ops team by automat-
ically monitoring and rescheduling those apps in the event of a hardware failure. The
focus for system administrators (sysadmins) shifts from supervising individual apps to
mostly supervising and managing Kubernetes and the rest of the infrastructure, while
Kubernetes itself takes care of the apps.

NOTE Kubernetes is Greek for pilot or helmsman (the person holding the
ship’s steering wheel). People pronounce Kubernetes in a few different ways.
Many pronounce it as Koo-ber-nay-tace, while others pronounce it more like
Koo-ber-netties. No matter which form you use, people will understand what
you mean.

Kubernetes abstracts away the hardware infrastructure and exposes your whole data-
center as a single enormous computational resource. It allows you to deploy and run
your software components without having to know about the actual servers under-
neath. When deploying a multi-component application through Kubernetes, it selects
a server for each component, deploys it, and enables it to easily find and communi-
cate with all the other components of your application.

This makes Kubernetes great for most on-premises datacenters, but where it starts
to shine is when it’s used in the largest datacenters, such as the ones built and oper-
ated by cloud providers. Kubernetes allows them to offer developers a simple platform
for deploying and running any type of application, while not requiring the cloud pro-
vider’s own sysadmins to know anything about the tens of thousands of apps running
on their hardware.

With more and more big companies accepting the Kubernetes model as the best
way to run apps, it’s becoming the standard way of running distributed apps both in
the cloud, as well as on local on-premises infrastructure.

Understanding the need for a system like Kubernetes

Before you start getting to know Kubernetes in detail, let’s take a quick look at how
the development and deployment of applications has changed in recent years. This
change is both a consequence of splitting big monolithic apps into smaller microservices



111

Understanding the need for a system like Kubernetes 3

and of the changes in the infrastructure that runs those apps. Understanding these
changes will help you better see the benefits of using Kubernetes and container tech-
nologies such as Docker.

Moving from monolithic apps to microservices

Monolithic applications consist of components that are all tightly coupled together and
have to be developed, deployed, and managed as one entity, because they all run as a sin-
gle OS process. Changes to one part of the application require a redeployment of the
whole application, and over time the lack of hard boundaries between the parts results
in the increase of complexity and consequential deterioration of the quality of the whole
system because of the unconstrained growth of inter-dependencies between these parts.

Running a monolithic application usually requires a small number of powerful
servers that can provide enough resources for running the application. To deal with
increasing loads on the system, you then either have to vertically scale the servers (also
known as scaling up) by adding more CPUs, memory, and other server components,
or scale the whole system horizontally, by setting up additional servers and running
multiple copies (or replicas) of an application (scaling out). While scaling up usually
doesn’t require any changes to the app, it gets expensive relatively quickly and in prac-
tice always has an upper limit. Scaling out, on the other hand, is relatively cheap hard-
ware-wise, but may require big changes in the application code and isn’t always
possible—certain parts of an application are extremely hard or next to impossible to
scale horizontally (relational databases, for example). If any part of a monolithic
application isn’t scalable, the whole application becomes unscalable, unless you can
split up the monolith somehow.

SPLITTING APPS INTO MICROSERVICES

These and other problems have forced us to start splitting complex monolithic appli-
cations into smaller independently deployable components called microservices. Each
microservice runs as an independent process (see figure 1.1) and communicates with
other microservices through simple, well-defined interfaces (APIs).

Monolithic application Microservices-based application
Server 1 Server 1 Server 2
Process 1.1 Process 2.1

QA
O

Single process Process 1.2 Process 2.2

Figure 1.1 Components inside a monolithic application vs. standalone microservices



CHAPTER 1 Introducing Kubernetes

Microservices communicate through synchronous protocols such as HT'TP, over which
they usually expose RESTful (REpresentational State Transfer) APIs, or through asyn-
chronous protocols such as AMQP (Advanced Message Queueing Protocol). These
protocols are simple, well understood by most developers, and not tied to any specific
programming language. Each microservice can be written in the language that’s most
appropriate for implementing that specific microservice.

Because each microservice is a standalone process with a relatively static external
API, it’s possible to develop and deploy each microservice separately. A change to one
of them doesn’t require changes or redeployment of any other service, provided that
the API doesn’t change or changes only in a backward-compatible way.

SCALING MICROSERVICES

Scaling microservices, unlike monolithic systems, where you need to scale the system as
a whole, is done on a per-service basis, which means you have the option of scaling only
those services that require more resources, while leaving others at their original scale.
Figure 1.2 shows an example. Certain components are replicated and run as multiple
processes deployed on different servers, while others run as a single application process.
When a monolithic application can’t be scaled out because one of its parts is unscal-
able, splitting the app into microservices allows you to horizontally scale the parts that
allow scaling out, and scale the parts that don’t, vertically instead of horizontally.

Single instance
(possibly not scalable)

Server 1 Server 2 Server 3 Server 4
Process 1.1 Process 2.1 Process 3.1 Process 4.1
Process 1.2 Process 2.2 Process 3.2 Process 4.2

Y

A

O
O
N4

N el

Process 1.3 Process 2.3 Process 3.3

Q. o

@

Three instances of
the same component

Figure 1.2 Each microservice can be scaled individually.



Understanding the need for a system like Kubernetes 5

DEPLOYING MICROSERVICES

As always, microservices also have drawbacks. When your system consists of only a
small number of deployable components, managing those components is easy. It’s
trivial to decide where to deploy each component, because there aren’t that many
choices. When the number of those components increases, deploymentrelated deci-
sions become increasingly difficult because not only does the number of deployment
combinations increase, but the number of inter-dependencies between the compo-
nents increases by an even greater factor.

Microservices perform their work together as a team, so they need to find and talk
to each other. When deploying them, someone or something needs to configure all of
them properly to enable them to work together as a single system. With increasing
numbers of microservices, this becomes tedious and error-prone, especially when you
consider what the ops/sysadmin teams need to do when a server fails.

Microservices also bring other problems, such as making it hard to debug and trace
execution calls, because they span multiple processes and machines. Luckily, these
problems are now being addressed with distributed tracing systems such as Zipkin.

UNDERSTANDING THE DIVERGENCE OF ENVIRONMENT REQUIREMENTS

As T've already mentioned, components in a microservices architecture aren’t only
deployed independently, but are also developed that way. Because of their indepen-
dence and the fact that it’s common to have separate teams developing each compo-
nent, nothing impedes each team from using different libraries and replacing them
whenever the need arises. The divergence of dependencies between application com-
ponents, like the one shown in figure 1.3, where applications require different ver-
sions of the same libraries, is inevitable.

Server running a monolithic app Server running multiple apps
Monolithic app App 1 App 2 App 3 App 4
1 Requires libraries
- Library A Library C
Requires libraries v1.0 vi.1
Library B
Library A Library B Library C Library A V24 Library C
v1.0 v2.4 vi.1 V2.2 / V2.0
Library Y
Library X v3.2
Library X | | Library Y Library X vi4 Library Y
v1.4 v3.2 v2.3 v4.0

Figure 1.3 Multiple applications running on the same host may have conflicting dependencies.



1.1.2

1.1.3

CHAPTER 1 Introducing Kubernetes

Deploying dynamically linked applications that require different versions of shared
libraries, and/or require other environment specifics, can quickly become a night-
mare for the ops team who deploys and manages them on production servers. The
bigger the number of components you need to deploy on the same host, the harder it
will be to manage all their dependencies to satisfy all their requirements.

Providing a consistent environment to applications

Regardless of how many individual components you're developing and deploying,
one of the biggest problems that developers and operations teams always have to deal
with is the differences in the environments they run their apps in. Not only is there a
huge difference between development and production environments, differences
even exist between individual production machines. Another unavoidable fact is that
the environment of a single production machine will change over time.

These differences range from hardware to the operating system to the libraries
that are available on each machine. Production environments are managed by the
operations team, while developers often take care of their development laptops on
their own. The difference is how much these two groups of people know about sys-
tem administration, and this understandably leads to relatively big differences
between those two systems, not to mention that system administrators give much more
emphasis on keeping the system up to date with the latest security patches, while a lot
of developers don’t care about that as much.

Also, production systems can run applications from multiple developers or devel-
opment teams, which isn’t necessarily true for developers’ computers. A production
system must provide the proper environment to all applications it hosts, even though
they may require different, even conflicting, versions of libraries.

To reduce the number of problems that only show up in production, it would be
ideal if applications could run in the exact same environment during development
and in production so they have the exact same operating system, libraries, system con-
figuration, networking environment, and everything else. You also don’t want this
environment to change too much over time, if at all. Also, if possible, you want the
ability to add applications to the same server without affecting any of the existing
applications on that server.

Moving to continuous delivery: DevOps and NoOps

In the last few years, we’ve also seen a shift in the whole application development pro-
cess and how applications are taken care of in production. In the past, the develop-
ment team’s job was to create the application and hand it off to the operations team,
who then deployed it, tended to it, and kept it running. But now, organizations are
realizing it’s better to have the same team that develops the application also take part
in deploying it and taking care of it over its whole lifetime. This means the developer,
QA, and operations teams now need to collaborate throughout the whole process.
This practice is called DevOps.



1.2

Introducing container technologies 7

UNDERSTANDING THE BENEFITS

Having the developers more involved in running the application in production leads
to them having a better understanding of both the users’ needs and issues and the
problems faced by the ops team while maintaining the app. Application developers
are now also much more inclined to give users the app earlier and then use their feed-
back to steer further development of the app.

To release newer versions of applications more often, you need to streamline the
deployment process. Ideally, you want developers to deploy the applications them-
selves without having to wait for the ops people. But deploying an application often
requires an understanding of the underlying infrastructure and the organization of
the hardware in the datacenter. Developers don’t always know those details and, most
of the time, don’t even want to know about them.

LETTING DEVELOPERS AND SYSADMINS DO WHAT THEY DO BEST

Even though developers and system administrators both work toward achieving the
same goal of running a successful software application as a service to its customers, they
have different individual goals and motivating factors. Developers love creating new fea-
tures and improving the user experience. They don’t normally want to be the ones mak-
ing sure that the underlying operating system is up to date with all the security patches
and things like that. They prefer to leave that up to the system administrators.

The ops team is in charge of the production deployments and the hardware infra-
structure they run on. They care about system security, utilization, and other aspects
that aren’t a high priority for developers. The ops people don’t want to deal with the
implicit interdependencies of all the application components and don’t want to think
about how changes to either the underlying operating system or the infrastructure
can affect the operation of the application as a whole, but they must.

Ideally, you want the developers to deploy applications themselves without know-
ing anything about the hardware infrastructure and without dealing with the ops
team. This is referred to as NoOps. Obviously, you still need someone to take care of
the hardware infrastructure, but ideally, without having to deal with peculiarities of
each application running on it.

As you’ll see, Kubernetes enables us to achieve all of this. By abstracting away the
actual hardware and exposing it as a single platform for deploying and running apps,
it allows developers to configure and deploy their applications without any help from
the sysadmins and allows the sysadmins to focus on keeping the underlying infrastruc-
ture up and running, while not having to know anything about the actual applications
running on top of it.

Introducing container technologies

In section 1.1 I presented a non-comprehensive list of problems facing today’s devel-
opment and ops teams. While you have many ways of dealing with them, this book will
focus on how they’re solved with Kubernetes.



1.2.1

CHAPTER 1 Introducing Kubernetes

Kubernetes uses Linux container technologies to provide isolation of running
applications, so before we dig into Kubernetes itself, you need to become familiar
with the basics of containers to understand what Kubernetes does itself, and what it
offloads to container technologies like Docker or 7kt (pronounced “rock-it”).

Understanding what containers are

In section 1.1.1 we saw how different software components running on the same
machine will require different, possibly conflicting, versions of dependent libraries or
have other different environment requirements in general.

When an application is composed of only smaller numbers of large components,
it’s completely acceptable to give a dedicated Virtual Machine (VM) to each compo-
nent and isolate their environments by providing each of them with their own operat-
ing system instance. But when these components start getting smaller and their
numbers start to grow, you can’t give each of them their own VM if you don’t want to
waste hardware resources and keep your hardware costs down. But it’s not only about
wasting hardware resources. Because each VM usually needs to be configured and
managed individually, rising numbers of VMs also lead to wasting human resources,
because they increase the system administrators’ workload considerably.

ISOLATING COMPONENTS WITH LINUX CONTAINER TECHNOLOGIES

Instead of using virtual machines to isolate the environments of each microservice (or
software processes in general), developers are turning to Linux container technolo-
gies. They allow you to run multiple services on the same host machine, while not only
exposing a different environment to each of them, but also isolating them from each
other, similarly to VMs, but with much less overhead.

A process running in a container runs inside the host’s operating system, like all
the other processes (unlike VMs, where processes run in separate operating sys-
tems). But the process in the container is still isolated from other processes. To the
process itself, it looks like it’s the only one running on the machine and in its oper-
ating system.

COMPARING VIRTUAL MACHINES TO CONTAINERS
Compared to VMs, containers are much more lightweight, which allows you to run
higher numbers of software components on the same hardware, mainly because each
VM needs to run its own set of system processes, which requires additional compute
resources in addition to those consumed by the component’s own process. A con-
tainer, on the other hand, is nothing more than a single isolated process running in
the host OS, consuming only the resources that the app consumes and without the
overhead of any additional processes.

Because of the overhead of VMs, you often end up grouping multiple applications
into each VM because you don’t have enough resources to dedicate a whole VM to
each app. When using containers, you can (and should) have one container for each



Introducing container technologies 9

application, as shown in figure 1.4. The end-result is that you can fit many more appli-
cations on the same bare-metal machine.

Apps running in three VMs Apps running in
(on a single machine) isolated containers
VM 1 VM 2 VM 3 Container 1 Container 2 Container 3
wn] || (e || [ || || Gwn) || [ || [
| App B | | App D | | App F | Container 4 Container 5 Container 6
[we] || [we] || [wr]
Guest OS Guest OS Guest OS
Container 7 Container 8 Container 9
App ... App ... App ...
| Hypervisor | | e | | e | | A2 |
| Host OS | | Host OS |
Bare-metal machine Bare-metal machine

Figure 1.4 Using VMs to isolate groups of applications vs. isolating individual apps with containers

When you run three VMs on a host, you have three completely separate operating sys-
tems running on and sharing the same bare-metal hardware. Underneath those VMs
is the host’s OS and a hypervisor, which divides the physical hardware resources into
smaller sets of virtual resources that can be used by the operating system inside each
VM. Applications running inside those VMs perform system calls to the guest OS’ ker-
nel in the VM, and the kernel then performs x86 instructions on the host’s physical
CPU through the hypervisor.

NOTE Two types of hypervisors exist. Type 1 hypervisors don’t use a host OS,
while Type 2 do.

Containers, on the other hand, all perform system calls on the exact same kernel run-
ning in the host OS. This single kernel is the only one performing x86 instructions on
the host’s CPU. The CPU doesn’t need to do any kind of virtualization the way it does
with VMs (see figure 1.5).

The main benefit of virtual machines is the full isolation they provide, because
each VM runs its own Linux kernel, while containers all call out to the same kernel,
which can clearly pose a security risk. If you have a limited amount of hardware
resources, VMs may only be an option when you have a small number of processes that



10

CHAPTER 1 Introducing Kubernetes

Apps running in multiple VMs

Virtual CPU

Virtual CPU

Virtual CPU

Hypervisor

!

Physical CPU

Apps running in isolated containers

Container Container Container Container Container Container

A B C D E F
App App App App App App
A B c D E F
L T O L B A
Kernel
!

Physical CPU

Figure 1.5 The difference between
how apps in VMs use the CPU vs. how
they use them in containers

you want to isolate. To run greater numbers of isolated processes on the same
machine, containers are a much better choice because of their low overhead. Remem-
ber, each VM runs its own set of system services, while containers don’t, because they
all run in the same OS. That also means that to run a container, nothing needs to be
booted up, as is the case in VMs. A process run in a container starts up immediately.



Introducing container technologies 11

INTRODUCING THE MECHANISMS THAT MAKE CONTAINER ISOLATION POSSIBLE

By this point, you’re probably wondering how exactly containers can isolate processes
if they’re running on the same operating system. Two mechanisms make this possible.
The first one, Linux Namespaces, makes sure each process sees its own personal view of
the system (files, processes, network interfaces, hostname, and so on). The second
one is Linux Control Groups (cgroups), which limit the amount of resources the process
can consume (CPU, memory, network bandwidth, and so on).

ISOLATING PROCESSES WITH LINUX NAMESPACES

By default, each Linux system initially has one single namespace. All system resources,
such as filesystems, process IDs, user IDs, network interfaces, and others, belong to the
single namespace. But you can create additional namespaces and organize resources
across them. When running a process, you run it inside one of those namespaces. The
process will only see resources that are inside the same namespace. Well, multiple
kinds of namespaces exist, so a process doesn’t belong to one namespace, but to one
namespace of each kind.

The following kinds of namespaces exist:

Mount (mnt)

Process ID (pid)

Network (net)

Inter-process communication (ipc)
UTS

User ID (user)

Each namespace kind is used to isolate a certain group of resources. For example, the
UTS namespace determines what hostname and domain name the process running
inside that namespace sees. By assigning two different UTS namespaces to a pair of
processes, you can make them see different local hostnames. In other words, to the
two processes, it will appear as though they are running on two different machines (at
least as far as the hostname is concerned).

Likewise, what Network namespace a process belongs to determines which net-
work interfaces the application running inside the process sees. Each network inter-
face belongs to exactly one namespace, but can be moved from one namespace to
another. Each container uses its own Network namespace, and therefore each con-
tainer sees its own set of network interfaces.

This should give you a basic idea of how namespaces are used to isolate applica-
tions running in containers from each other.

LIMITING RESOURCES AVAILABLE TO A PROCESS

The other half of container isolation deals with limiting the amount of system
resources a container can consume. This is achieved with cgroups, a Linux kernel fea-
ture that limits the resource usage of a process (or a group of processes). A process
can’t use more than the configured amount of CPU, memory, network bandwidth,



12

1.2.2

CHAPTER 1 Introducing Kubernetes

and so on. This way, processes cannot hog resources reserved for other processes,
which is similar to when each process runs on a separate machine.

Introducing the Docker container platform

While container technologies have been around for a long time, they've become
more widely known with the rise of the Docker container platform. Docker was the
first container system that made containers easily portable across different machines.
It simplified the process of packaging up not only the application but also all its
libraries and other dependencies, even the whole OS file system, into a simple, por-
table package that can be used to provision the application to any other machine
running Docker.

When you run an application packaged with Docker, it sees the exact filesystem
contents that you've bundled with it. It sees the same files whether it’s running on
your development machine or a production machine, even if it the production server
is running a completely different Linux OS. The application won’t see anything from
the server it’s running on, so it doesn’t matter if the server has a completely different
set of installed libraries compared to your development machine.

For example, if you’ve packaged up your application with the files of the whole
Red Hat Enterprise Linux (RHEL) operating system, the application will believe it’s
running inside RHEL, both when you run it on your development computer that runs
Fedora and when you run it on a server running Debian or some other Linux distribu-
tion. Only the kernel may be different.

This is similar to creating a VM image by installing an operating system into a VM,
installing the app inside it, and then distributing the whole VM image around and
running it. Docker achieves the same effect, but instead of using VMs to achieve app
isolation, it uses Linux container technologies mentioned in the previous section to
provide (almost) the same level of isolation that VMs do. Instead of using big mono-
lithic VM images, it uses container images, which are usually smaller.

A big difference between Docker-based container images and VM images is that
container images are composed of layers, which can be shared and reused across mul-
tiple images. This means only certain layers of an image need to be downloaded if the
other layers were already downloaded previously when running a different container
image that also contains the same layers.

UNDERSTANDING DOCKER CONCEPTS

Docker is a platform for packaging, distributing, and running applications. As we’ve
already stated, it allows you to package your application together with its whole envi-
ronment. This can be either a few libraries that the app requires or even all the files
that are usually available on the filesystem of an installed operating system. Docker
makes it possible to transfer this package to a central repository from which it can
then be transferred to any computer running Docker and executed there (for the
most part, but not always, as we’ll soon explain).



Introducing container technologies 13

Three main concepts in Docker comprise this scenario:

Images—A Docker-based container image is something you package your appli-
cation and its environment into. It contains the filesystem that will be available
to the application and other metadata, such as the path to the executable that

should be executed when the image is run.

Registries—A Docker Registry is a repository that stores your Docker images and

facilitates easy sharing of those images between different people and comput-

ers. When you build your image, you can either run it on the computer you've

built

it on, or you can push (upload) the image to a registry and then pull

(download) it on another computer and run it there. Certain registries are pub-

lic, allowing anyone to pull images from it, while others are private, only accessi-

ble to certain people or machines.

Containers—A Docker-based container is a regular Linux container created from

a Docker-based container image. A running container is a process running on
the host running Docker, but it’s completely isolated from both the host and all
other processes running on it. The process is also resource-constrained, mean-
ing it can only access and use the amount of resources (CPU, RAM, and so on)
that are allocated to it.

BUILDING, DISTRIBUTING, AND RUNNING A DOCKER IMAGE
Figure 1.6 shows all three concepts and how they relate to each other. The developer
first builds an image and then pushes it to a registry. The image is thus available to

anyone who can access the registry. They can then pull the image to any other

machine running Docker and run the image. Docker creates an isolated container
based on the image and runs the binary executable specified as part of the image.

I. Developer tells

3. Docker

Docker to build 2. Docker pushes image

and push image

builds image to registry

<> Container -«

/

Developer <

=~ meoe —— O —
N Image Docker u

-

Docker |\—/|

Development machine Production machine

Image registry

\

4. Developer tells 5. Docker pulls 6. Docker runs
Docker on production image from container from
machine to run image registry image

Figure 1.6 Docker images, registries, and containers



14

COMPARING VIRTUAL MACHINES AND DOCKER CONTAINERS

CHAPTER 1 Introducing Kubernetes

I've explained how Linux containers are generally like virtual machines, but much
more lightweight. Now let’s look at how Docker containers specifically compare to vir-
tual machines (and how Docker images compare to VM images). Figure 1.7 again shows
the same six applications running both in VMs and as Docker containers.

Host running multiple VMs

VM 1

VM 2 VM 3
App App App | App | App App
A B (¢} D E F
Binaries and Binaries and Binaries and
libraries libraries libraries
(Filesystem) (Filesystem) (Filesystem)

Guest OS kernel

Guest OS kernel

Guest OS kernel

Hypervisor

Host OS

Host running multiple Docker containers

— N (s < [Te) ©
5] @ @ 5] 5] 5]
£ £ £ £ £ £
@© © @© @© [} @
c = = = IS =
<} <} <} <} <} S
o o o o o o
App App || App | App | App || App
A B (o} D E F
Binaries and Binaries and Binaries and || Docker
libraries libraries libraries
(Filesystem) (Filesystem) (Filesystem)

Host OS

Figure 1.7 Running six apps on
three VMs vs. running them in
Docker containers

You’'ll notice that apps A and B have access to the same binaries and libraries both
when running in a VM and when running as two separate containers. In the VM, this
is obvious, because both apps see the same filesystem (that of the VM). But we said



1.2.3

Introducing container technologies 15

that each container has its own isolated filesystem. How can both app A and app B
share the same files?

UNDERSTANDING IMAGE LAYERS

I've already said that Docker images are composed of layers. Different images can con-
tain the exact same layers because every Docker image is built on top of another
image and two different images can both use the same parent image as their base.
This speeds up the distribution of images across the network, because layers that have
already been transferred as part of the first image don’t need to be transferred again
when transferring the other image.

But layers don’t only make distribution more efficient, they also help reduce the
storage footprint of images. Each layer is only stored once. Two containers created
from two images based on the same base layers can therefore read the same files, but
if one of them writes over those files, the other one doesn’t see those changes. There-
fore, even if they share files, they’re still isolated from each other. This works because
container image layers are read-only. When a container is run, a new writable layer is
created on top of the layers in the image. When the process in the container writes to
a file located in one of the underlying layers, a copy of the whole file is created in the
top-most layer and the process writes to the copy.

UNDERSTANDING THE PORTABILITY LIMITATIONS OF CONTAINER IMAGES

In theory, a container image can be run on any Linux machine running Docker, but
one small caveat exists—one related to the fact that all containers running on a host use
the host’s Linux kernel. If a containerized application requires a specific kernel version,
it may not work on every machine. If a machine runs a different version of the Linux
kernel or doesn’t have the same kernel modules available, the app can’t run on it.

While containers are much more lightweight compared to VMs, they impose cer-
tain constraints on the apps running inside them. VMs have no such constraints,
because each VM runs its own kernel.

And it’s not only about the kernel. It should also be clear that a containerized app
built for a specific hardware architecture can only run on other machines that have
the same architecture. You can’t containerize an application built for the x86 architec-
ture and expect it to run on an ARM-based machine because it also runs Docker. You
still need a VM for that.

Introducing rkt—an alternative to Docker

Docker was the first container platform that made containers mainstream. I hope I've
made it clear that Docker itself doesn’t provide process isolation. The actual isolation
of containers is done at the Linux kernel level using kernel features such as Linux
Namespaces and cgroups. Docker only makes it easy to use those features.

After the success of Docker, the Open Container Initiative (OCI) was born to cre-
ate open industry standards around container formats and runtime. Docker is part
of that initiative, as is rk¢ (pronounced “rock-it”), which is another Linux container
engine.



16

1.3

131

1.3.2

CHAPTER 1 Introducing Kubernetes

Like Docker, rkt is a platform for running containers. It puts a strong emphasis on
security, composability, and conforming to open standards. It uses the OCI container
image format and can even run regular Docker container images.

This book focuses on using Docker as the container runtime for Kubernetes,
because it was initially the only one supported by Kubernetes. Recently, Kubernetes
has also started supporting rkt, as well as others, as the container runtime.

The reason I mention rkt at this point is so you don’t make the mistake of thinking
Kubernetes is a container orchestration system made specifically for Docker-based
containers. In fact, over the course of this book, you’ll realize that the essence of
Kubernetes isn’t orchestrating containers. It’s much more. Containers happen to be
the best way to run apps on different cluster nodes. With that in mind, let’s finally dive
into the core of what this book is all about—Kubernetes.

Introducing Kubernetes

We’ve already shown that as the number of deployable application components in
your system grows, it becomes harder to manage them all. Google was probably the
first company that realized it needed a much better way of deploying and managing
their software components and their infrastructure to scale globally. It’s one of only a
few companies in the world that runs hundreds of thousands of servers and has had to
deal with managing deployments on such a massive scale. This has forced them to
develop solutions for making the development and deployment of thousands of soft-
ware components manageable and cost-efficient.

Understanding its origins

Through the years, Google developed an internal system called Borg (and later a new
system called Omega), that helped both application developers and system administra-
tors manage those thousands of applications and services. In addition to simplifying
the development and management, it also helped them achieve a much higher utiliza-
tion of their infrastructure, which is important when your organization is that large.
When you run hundreds of thousands of machines, even tiny improvements in utiliza-
tion mean savings in the millions of dollars, so the incentives for developing such a
system are clear.

After having kept Borg and Omega secret for a whole decade, in 2014 Google
introduced Kubernetes, an open-source system based on the experience gained
through Borg, Omega, and other internal Google systems.

Looking at Kubernetes from the top of a mountain

Kubernetes is a software system that allows you to easily deploy and manage container-
ized applications on top of it. It relies on the features of Linux containers to run het-
erogeneous applications without having to know any internal details of these
applications and without having to manually deploy these applications on each host.
Because these apps run in containers, they don’t affect other apps running on the



Introducing Kubernetes 17

same server, which is critical when you run applications for completely different orga-
nizations on the same hardware. This is of paramount importance for cloud provid-
ers, because they strive for the best possible utilization of their hardware while still
having to maintain complete isolation of hosted applications.

Kubernetes enables you to run your software applications on thousands of com-
puter nodes as if all those nodes were a single, enormous computer. It abstracts away
the underlying infrastructure and, by doing so, simplifies development, deployment,
and management for both development and the operations teams.

Deploying applications through Kubernetes is always the same, whether your clus-
ter contains only a couple of nodes or thousands of them. The size of the cluster
makes no difference at all. Additional cluster nodes simply represent an additional
amount of resources available to deployed apps.

UNDERSTANDING THE CORE OF WHAT KUBERNETES DOES

Figure 1.8 shows the simplest possible view of a Kubernetes system. The system is com-
posed of a master node and any number of worker nodes. When the developer sub-
mits a list of apps to the master, Kubernetes deploys them to the cluster of worker
nodes. What node a component lands on doesn’t (and shouldn’t) matter—neither to
the developer nor to the system administrator.

Tens or thousands of worker nodes exposed

App descriptor as a single deployment platform
Developer 1x
5x
|| Kubernetes
master

-

2x

>0D||0)®

Figure 1.8 Kubernetes exposes the whole datacenter as a single deployment platform.

The developer can specify that certain apps must run together and Kubernetes will
deploy them on the same worker node. Others will be spread around the cluster, but
they can talk to each other in the same way, regardless of where they’re deployed.

HELPING DEVELOPERS FOCUS ON THE CORE APP FEATURES

Kubernetes can be thought of as an operating system for the cluster. It relieves appli-
cation developers from having to implement certain infrastructure-related services
into their apps; instead they rely on Kubernetes to provide these services. This includes
things such as service discovery, scaling, load-balancing, self-healing, and even leader



18

1.3.3

CHAPTER 1 Introducing Kubernetes

election. Application developers can therefore focus on implementing the actual fea-
tures of the applications and not waste time figuring out how to integrate them with
the infrastructure.

HELPING OPS TEAMS ACHIEVE BETTER RESOURCE UTILIZATION

Kubernetes will run your containerized app somewhere in the cluster, provide infor-
mation to its components on how to find each other, and keep all of them running.
Because your application doesn’t care which node it’s running on, Kubernetes can
relocate the app at any time, and by mixing and matching apps, achieve far better
resource utilization than is possible with manual scheduling.

Understanding the architecture of a Kubernetes cluster

We’ve seen a bird’s-eye view of Kubernetes’ architecture. Now let’s take a closer look at
what a Kubernetes cluster is composed of. At the hardware level, a Kubernetes cluster
is composed of many nodes, which can be split into two types:

The master node, which hosts the Kubernetes Control Plane that controls and man-
ages the whole Kubernetes system
Worker nodes that run the actual applications you deploy

Figure 1.9 shows the components running on these two sets of nodes. I'll explain
them next.

Control Plane (master)

S
~ API server L
V\\

Controller
Manager Kubelet kube-proxy

Worker node(s)

Scheduler

Container Runtime

Figure 1.9 The components that make up a Kubernetes cluster

THE CONTROL PLANE

The Control Plane is what controls the cluster and makes it function. It consists of
multiple components that can run on a single master node or be split across multiple
nodes and replicated to ensure high availability. These components are

The Kubernetes API Server, which you and the other Control Plane components
communicate with


http://www.allitebooks.org

134

Introducing Kubernetes 19

The Scheduler, which schedules your apps (assigns a worker node to each deploy-
able component of your application)

The Controller Manager, which performs cluster-level functions, such as repli-
cating components, keeping track of worker nodes, handling node failures,
and so on

eled, a reliable distributed data store that persistently stores the cluster
configuration.

The components of the Control Plane hold and control the state of the cluster, but
they don’t run your applications. This is done by the (worker) nodes.

THE NODES

The worker nodes are the machines that run your containerized applications. The
task of running, monitoring, and providing services to your applications is done by
the following components:

Docker, rkt, or another container runtime, which runs your containers

The Kubelet, which talks to the API server and manages containers on its node
The Kubernetes Service Proxy (kube-proxy), which load-balances network traffic
between application components

We’ll explain all these components in detail in chapter 11. I'm not a fan of explaining
how things work before first explaining what something does and teaching people to
use it. It’s like learning to drive a car. You don’t want to know what’s under the hood.
You first want to learn how to drive it from point A to point B. Only after you learn
how to do that do you become interested in how a car makes that possible. After all,
knowing what’s under the hood may someday help you get the car moving again after
it breaks down and leaves you stranded at the side of the road.

Running an application in Kubernetes

To run an application in Kubernetes, you first need to package it up into one or more
container images, push those images to an image registry, and then post a description
of your app to the Kubernetes API server.

The description includes information such as the container image or images that
contain your application components, how those components are related to each
other, and which ones need to be run co-located (together on the same node) and
which don’t. For each component, you can also specify how many copies (or replicas)
you want to run. Additionally, the description also includes which of those compo-
nents provide a service to either internal or external clients and should be exposed
through a single IP address and made discoverable to the other components.

UNDERSTANDING HOW THE DESCRIPTION RESULTS IN A RUNNING CONTAINER

When the API server processes your app’s description, the Scheduler schedules the
specified groups of containers onto the available worker nodes based on computa-
tional resources required by each group and the unallocated resources on each node



20

CHAPTER 1 Introducing Kubernetes

at that moment. The Kubelet on those nodes then instructs the Container Runtime
(Docker, for example) to pull the required container images and run the containers.

Examine figure 1.10 to gain a better understanding of how applications are
deployed in Kubernetes. The app descriptor lists four containers, grouped into three
sets (these sets are called pods; we’ll explain what they are in chapter 3). The first two
pods each contain only a single container, whereas the last one contains two. That
means both containers need to run co-located and shouldn’t be isolated from each
other. Next to each pod, you also see a number representing the number of replicas
of each pod that need to run in parallel. After submitting the descriptor to Kuberne-
tes, it will schedule the specified number of replicas of each pod to the available
worker nodes. The Kubelets on the nodes will then tell Docker to pull the container
images from the image registry and run the containers.

Worker nodes
O Image registry : O : O
é @‘~3§:“=::: T A
':“; - Docker T Docker
:," e Kubelet‘\kube-proxy Kubelet | kube-proxy
1x < > i 3
B Q Control Plane :"f O Q \\ O
(master) i f
Q ! - Docker - Docker
2x |
A : | Kubelet | kube-proxy Kubelet | kube-proxy
App descriptor ! O
Legend
- Docker Docker
<> Container image Q Multiple containers
running “together”
O Container A (not fully isolated) | Kubelet | kube-proxy Kubelet | kube-proxy

Figure 1.10 A basic overview of the Kubernetes architecture and an application running on top of it

KEEPING THE CONTAINERS RUNNING
Once the application is running, Kubernetes continuously makes sure that the deployed
state of the application always matches the description you provided. For example, if



135

Introducing Kubernetes 21

you specify that you always want five instances of a web server running, Kubernetes will
always keep exactly five instances running. If one of those instances stops working
properly, like when its process crashes or when it stops responding, Kubernetes will
restart it automatically.

Similarly, if a whole worker node dies or becomes inaccessible, Kubernetes will
select new nodes for all the containers that were running on the node and run them
on the newly selected nodes.

SCALING THE NUMBER OF COPIES

While the application is running, you can decide you want to increase or decrease the
number of copies, and Kubernetes will spin up additional ones or stop the excess
ones, respectively. You can even leave the job of deciding the optimal number of cop-
ies to Kubernetes. It can automatically keep adjusting the number, based on real-time
metrics, such as CPU load, memory consumption, queries per second, or any other
metric your app exposes.

HITTING A MOVING TARGET

We’ve said that Kubernetes may need to move your containers around the cluster.
This can occur when the node they were running on has failed or because they were
evicted from a node to make room for other containers. If the container is providing a
service to external clients or other containers running in the cluster, how can they use
the container properly if it’s constantly moving around the cluster? And how can cli-
ents connect to containers providing a service when those containers are replicated
and spread across the whole cluster?

To allow clients to easily find containers that provide a specific service, you can tell
Kubernetes which containers provide the same service and Kubernetes will expose all
of them at a single static IP address and expose that address to all applications run-
ning in the cluster. This is done through environment variables, but clients can also
look up the service IP through good old DNS. The kube-proxy will make sure connec-
tions to the service are load balanced across all the containers that provide the service.
The IP address of the service stays constant, so clients can always connect to its con-
tainers, even when they’re moved around the cluster.

Understanding the benefits of using Kubernetes

If you have Kubernetes deployed on all your servers, the ops team doesn’t need to
deal with deploying your apps anymore. Because a containerized application already
contains all it needs to run, the system administrators don’t need to install anything to
deploy and run the app. On any node where Kubernetes is deployed, Kubernetes can
run the app immediately without any help from the sysadmins.

SIMPLIFYING APPLICATION DEPLOYMENT

Because Kubernetes exposes all its worker nodes as a single deployment platform,
application developers can start deploying applications on their own and don’t need
to know anything about the servers that make up the cluster.



22

CHAPTER 1 Introducing Kubernetes

In essence, all the nodes are now a single bunch of computational resources that
are waiting for applications to consume them. A developer doesn’t usually care what
kind of server the application is running on, as long as the server can provide the
application with adequate system resources.

Certain cases do exist where the developer does care what kind of hardware the
application should run on. If the nodes are heterogeneous, you’ll find cases when you
want certain apps to run on nodes with certain capabilities and run other apps on oth-
ers. For example, one of your apps may require being run on a system with SSDs
instead of HDDs, while other apps run fine on HDDs. In such cases, you obviously
want to ensure that particular app is always scheduled to a node with an SSD.

Without using Kubernetes, the sysadmin would select one specific node that has an
SSD and deploy the app there. But when using Kubernetes, instead of selecting a spe-
cific node where your app should be run, it’s more appropriate to tell Kubernetes to
only choose among nodes with an SSD. You’ll learn how to do that in chapter 3.

ACHIEVING BETTER UTILIZATION OF HARDWARE

By setting up Kubernetes on your servers and using it to run your apps instead of run-
ning them manually, you’ve decoupled your app from the infrastructure. When you
tell Kubernetes to run your application, you're letting it choose the most appropriate
node to run your application on based on the description of the application’s
resource requirements and the available resources on each node.

By using containers and not tying the app down to a specific node in your cluster,
you’re allowing the app to freely move around the cluster at any time, so the different
app components running on the cluster can be mixed and matched to be packed
tightly onto the cluster nodes. This ensures the node’s hardware resources are utilized
as best as possible.

The ability to move applications around the cluster at any time allows Kubernetes
to utilize the infrastructure much better than what you can achieve manually. Humans
aren’t good at finding optimal combinations, especially when the number of all possi-
ble options is huge, such as when you have many application components and many
server nodes they can be deployed on. Computers can obviously perform this work
much better and faster than humans.

HEALTH CHECKING AND SELF-HEALING

Having a system that allows moving an application across the cluster at any time is also
valuable in the event of server failures. As your cluster size increases, you’ll deal with
failing computer components ever more frequently.

Kubernetes monitors your app components and the nodes they run on and auto-
matically reschedules them to other nodes in the event of a node failure. This frees
the ops team from having to migrate app components manually and allows the team
to immediately focus on fixing the node itself and returning it to the pool of available
hardware resources instead of focusing on relocating the app.

If your infrastructure has enough spare resources to allow normal system opera-
tion even without the failed node, the ops team doesn’t even need to react to the failure



1.4

Summary 23

immediately, such as at 3 a.m. They can sleep tight and deal with the failed node
during regular work hours.

AUTOMATIC SCALING

Using Kubernetes to manage your deployed applications also means the ops team
doesn’t need to constantly monitor the load of individual applications to react to sud-
den load spikes. As previously mentioned, Kubernetes can be told to monitor the
resources used by each application and to keep adjusting the number of running
instances of each application.

If Kubernetes is running on cloud infrastructure, where adding additional nodes is
as easy as requesting them through the cloud provider’s API, Kubernetes can even
automatically scale the whole cluster size up or down based on the needs of the
deployed applications.

SIMPLIFYING APPLICATION DEVELOPMENT

The features described in the previous section mostly benefit the operations team. But
what about the developers? Does Kubernetes bring anything to their table? It defi-
nitely does.

If you turn back to the fact that apps run in the same environment both during
development and in production, this has a big effect on when bugs are discovered. We
all agree the sooner you discover a bug, the easier it is to fix it, and fixing it requires
less work. It’s the developers who do the fixing, so this means less work for them.

Then there’s the fact that developers don’t need to implement features that they
would usually implement. This includes discovery of services and/or peers in a clustered
application. Kubernetes does this instead of the app. Usually, the app only needs to look
up certain environment variables or perform a DNS lookup. If that’s not enough, the
application can query the Kubernetes API server directly to get that and/or other infor-
mation. Querying the Kubernetes API server like that can even save developers from
having to implement complicated mechanisms such as leader election.

As a final example of what Kubernetes brings to the table, you also need to con-
sider the increase in confidence developers will feel knowing that when a new version
of their app is going to be rolled out, Kubernetes can automatically detect if the new
version is bad and stop its rollout immediately. This increase in confidence usually
accelerates the continuous delivery of apps, which benefits the whole organization.

Summary

In this introductory chapter, you’ve seen how applications have changed in recent
years and how they can now be harder to deploy and manage. We’ve introduced
Kubernetes and shown how it, together with Docker and other container platforms,
helps deploy and manage applications and the infrastructure they run on. You've
learned that

Monolithic apps are easier to deploy, but harder to maintain over time and
sometimes impossible to scale.



CHAPTER 1 Introducing Kubernetes

Microservices-based application architectures allow easier development of each
component, but are harder to deploy and configure to work as a single system.
Linux containers provide much the same benefits as virtual machines, but are
far more lightweight and allow for much better hardware utilization.

Docker improved on existing Linux container technologies by allowing easier and
faster provisioning of containerized apps together with their OS environments.
Kubernetes exposes the whole datacenter as a single computational resource
for running applications.

Developers can deploy apps through Kubernetes without assistance from
sysadmins.

Sysadmins can sleep better by having Kubernetes deal with failed nodes auto-
matically.

In the next chapter, you’ll get your hands dirty by building an app and running it in
Docker and then in Kubernetes.



Frst steps with Docker
and Kubernetes

This chapter covers

Creating, running, and sharing a container image
with Docker

Running a single-node Kubernetes cluster locally

Setting up a Kubernetes cluster on Google
Kubernetes Engine

Setting up and using the kubectl command-line
client

Deploying an app on Kubernetes and scaling it
horizontally

Before you start learning about Kubernetes concepts in detail, let’s see how to cre-
ate a simple application, package it into a container image, and run it in a managed
Kubernetes cluster (in Google Kubernetes Engine) or in a local single-node cluster.
This should give you a slightly better overview of the whole Kubernetes system and
will make it easier to follow the next few chapters, where we’ll go over the basic
building blocks and concepts in Kubernetes.

25



26

2.1

211

CHAPTER 2  First steps with Docker and Kubernetes

Creating, running, and sharing a container image

As you’ve already learned in the previous chapter, running applications in Kubernetes
requires them to be packaged into container images. We’ll do a basic introduction to
using Docker in case you haven’t used it yet. In the next few sections you’ll

1 Install Docker and run your first “Hello world” container

2 Create a trivial Node.js app that you’ll later deploy in Kubernetes

s Package the app into a container image so you can then run it as an isolated
container

4 Run a container based on the image

5 Push the image to Docker Hub so that anyone anywhere can run it

Installing Docker and running a Hello World container

First, you’ll need to install Docker on your Linux machine. If you don’t use Linux,
you’ll need to start a Linux virtual machine (VM) and run Docker inside that VM. If
you’re using a Mac or Windows and install Docker per instructions, Docker will set up
a VM for you and run the Docker daemon inside that VM. The Docker client execut-
able will be available on your host OS, and will communicate with the daemon inside
the VM.

To install Docker, follow the instructions at http://docs.docker.com/engine/
installation/ for your specific operating system. After completing the installation, you
can use the Docker client executable to run various Docker commands. For example,
you could try pulling and running an existing image from Docker Hub, the public
Docker registry, which contains ready-to-use container images for many well-known
software packages. One of them is the busybox image, which you’ll use to run a simple
echo "Hello world" command.

RUNNING A HELLO WORLD CONTAINER
If you’re unfamiliar with busybox, it’s a single executable that combines many of the
standard UNIX command-line tools, such as echo, 1s, gzip, and so on. Instead of the
busybox image, you could also use any other full-fledged OS container image such as
Fedora, Ubuntu, or other similar images, as long as it includes the echo executable.
How do you run the busybox image? You don’t need to download or install any-
thing. Use the docker run command and specify what image to download and run
and (optionally) what command to execute, as shown in the following listing.

Listing 2.1 Running a Hello world container with Docker

$ docker run busybox echo "Hello world"

Unable to find image 'busybox:latest' locally

latest: Pulling from docker.io/busybox

9al163e0b8dl13: Pull complete

fef924a0204a: Pull complete

Digest: sha256:97473e34e31le6clb3f61£2a721d038d1le5eef17d98d1353a513007cf46cacbd
Status: Downloaded newer image for docker.io/busybox:latest

Hello world


http://docs.docker.com/engine/installation/
http://docs.docker.com/engine/installation/
http://docs.docker.com/engine/installation/

Creating, running, and sharing a container image 27

This doesn’t look that impressive, but when you consider that the whole “app” was
downloaded and executed with a single command, without you having to install that
app or anything else, you’ll agree it’s awesome. In your case, the app was a single execut-
able (busybox), but it might as well have been an incredibly complex app with many
dependencies. The whole process of setting up and running the app would have been
exactly the same. What’s also important is that the app was executed inside a container,
completely isolated from all the other processes running on your machine.

UNDERSTANDING WHAT HAPPENS BEHIND THE SCENES

Figure 2.1 shows exactly what happened when you performed the docker run com-
mand. First, Docker checked to see if the busybox:latest image was already present
on your local machine. It wasn’t, so Docker pulled it from the Docker Hub registry at
http://docker.io. After the image was downloaded to your machine, Docker created a
container from that image and ran the command inside it. The echo command
printed the text to STDOUT and then the process terminated and the container

stopped.
2. Docker checks if busybox
image is already stored locally
3. Docker pulls
busybox image e
1. docker run busybox from registry (if not |[—— |
echo "Hello world" available locally)
Docker busybox busybox
4. Docker runs Q A
echo "Hello world"
in isolated container
- —
Q Docker Hub

Local machine

Figure 2.1 Running echo “Hello world” in a container based on the busybox container image

RUNNING OTHER IMAGES

Running other existing container images is much the same as how you ran the busybox
image. In fact, it’s often even simpler, because you usually don’t need to specify what
command to execute, the way you did in the example (echo "Hello world"). The
command that should be executed is usually baked into the image itself, but you can
override it if you want. After searching or browsing through the publicly available
images on http://hub.docker.com or another public registry, you tell Docker to run
the image like this:

$ docker run <image>


http://hub.docker.com
http://docker.io

28

212

CHAPTER 2  First steps with Docker and Kubernetes

VERSIONING CONTAINER IMAGES

All software packages get updated, so more than a single version of a package usually
exists. Docker supports having multiple versions or variants of the same image under
the same name. Each variant must have a unique tag. When referring to images with-
out explicitly specifying the tag, Docker will assume you’re referring to the so-called
latest tag. To run a different version of the image, you may specify the tag along with
the image name like this:

$ docker run <image>:<tag>

Creating a trivial Node.js app

Now that you have a working Docker setup, you’re going to create an app. You’ll build
a trivial Node.js web application and package it into a container image. The applica-
tion will accept HTTP requests and respond with the hostname of the machine it’s
running in. This way, you’ll see that an app running inside a container sees its own
hostname and not that of the host machine, even though it’s running on the host like
any other process. This will be useful later, when you deploy the app on Kubernetes
and scale it out (scale it horizontally; that is, run multiple instances of the app). You'll
see your HTTP requests hitting different instances of the app.

Your app will consist of a single file called app.js with the contents shown in the fol-
lowing listing.

Listing 2.2 A simple Node.js app: app.js

const http = require('http');
const os = require('os');

console.log("Kubia server starting...");

var handler = function(request, response) {
console.log("Received request from " + request.connection.remoteAddress) ;
response.writeHead (200) ;
response.end ("You've hit " + os.hostname() + "\n");

}i

var www = http.createServer (handler) ;
www.listen(8080) ;

It should be clear what this code does. It starts up an HTTP server on port 8080. The
server responds with an HTTP response status code 200 OK and the text "You've hit
<hostname>" to every request. The request handler also logs the client’s IP address to
the standard output, which you’ll need later.

NOTE The returned hostname is the server’s actual hostname, not the one
the client sends in the HTTP request’s Host header.

You could now download and install Node.js and test your app directly, but this isn’t
necessary, because you’ll use Docker to package the app into a container image and



213

214

Creating, running, and sharing a container image 29

enable it to be run anywhere without having to download or install anything (except
Docker, which does need to be installed on the machine you want to run the image on).

Creating a Dockerfile for the image

To package your app into an image, you first need to create a file called Dockerfile,
which will contain a list of instructions that Docker will perform when building the
image. The Dockerfile needs to be in the same directory as the app.js file and should
contain the commands shown in the following listing.

Listing 2.3 A Dockerfile for building a container image for your app

FROM node:7
ADD app.js /app.js
ENTRYPOINT ["node", "app.js"]

The FROM line defines the container image you’ll use as a starting point (the base
image you’re building on top of). In your case, you’re using the node container image,
tag 7. In the second line, you're adding your app.js file from your local directory into
the root directory in the image, under the same name (app.js). Finally, in the third
line, you're defining what command should be executed when somebody runs the
image. In your case, the command is node app.js.

Choosing a base image

You may wonder why we chose this specific image as your base. Because your app
is a Node.js app, you need your image to contain the node binary executable to run
the app. You could have used any image that contains that binary, or you could have
even used a Linux distro base image such as fedora or ubuntu and installed
Node.js into the container at image build time. But because the node image is made
specifically for running Node.js apps, and includes everything you need to run your
app, you’ll use that as the base image.

Building the container image

Now that you have your Dockerfile and the app.js file, you have everything you need
to build your image. To build it, run the following Docker command:

$ docker build -t kubia .

Figure 2.2 shows what happens during the build process. You're telling Docker to
build an image called kubia based on the contents of the current directory (note the
dot at the end of the build command). Docker will look for the Dockerfile in the direc-
tory and build the image based on the instructions in the file.



30 CHAPTER 2  First steps with Docker and Kubernetes

1. docker build

kubia .
Docker client
2. Docker client uploads
directory contents to daemon
| | Dockerfile app.js
3. Docker pulls image e
Docker daemon node7.0ifitisnt [— )
stored locally yet
node:7.0 node:7.0
T Lo | @A
E kubia:latest —| image
v:
Docker Hub

Local machine

Figure 2.2 Building a new container image from a Dockerfile

UNDERSTANDING HOW AN IMAGE IS BUILT

The build process isn’t performed by the Docker client. Instead, the contents of the
whole directory are uploaded to the Docker daemon and the image is built there.
The client and daemon don’t need to be on the same machine at all. If you’re using
Docker on a non-Linux OS, the client is on your host OS, but the daemon runs
inside a VM. Because all the files in the build directory are uploaded to the daemon,
if it contains many large files and the daemon isn’t running locally, the upload may
take longer.

TIP Don’t include any unnecessary files in the build directory, because they’ll
slow down the build process—especially when the Docker daemon is on a
remote machine.

During the build process, Docker will first pull the base image (node:7) from the pub-
lic image repository (Docker Hub), unless the image has already been pulled and is
stored on your machine.

UNDERSTANDING IMAGE LAYERS

An image isn’t a single, big, binary blob, but is composed of multiple layers, which you
may have already noticed when running the busybox example (there were multiple
Pull complete lines—one for each layer). Different images may share several layers,



Creating, running, and sharing a container image 31

which makes storing and transferring images much more efficient. For example, if
you create multiple images based on the same base image (such as node: 7 in the exam-
ple), all the layers comprising the base image will be stored only once. Also, when pull-
ing an image, Docker will download each layer individually. Several layers may already
be stored on your machine, so Docker will only download those that aren’t.

You may think that each Dockerfile creates only a single new layer, but that’s not
the case. When building an image, a new layer is created for each individual command
in the Dockerfile. During the build of your image, after pulling all the layers of the base
image, Docker will create a new layer on top of them and add the app,js file into it.
Then it will create yet another layer that will specify the command that should be exe-
cuted when the image is run. This last layer will then be tagged as kubia:latest. This is
shown in figure 2.3, which also shows how a different image called other:latest would
use the same layers of the Node.js image as your own image does.

| CMD node app.js |

| ADD app.js/app.js | | — other:latest image

| CMD node
1

|
|
|
RUN curl ... |
|
|
|

kubia:latest image —|

— node:0.12 image

RUN apt-get ...

1
buildpack-deps:jessie image
Figure 2.3 Container images are composed of layers that can be shared among different images.

When the build process completes, you have a new image stored locally. You can see it
by telling Docker to list all locally stored images, as shown in the following listing.

Listing 2.4 Listing locally stored images

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
kubia latest d30ecc7419e7 1 minute ago 637.1 MB

COMPARING BUILDING IMAGES WITH A DOCKERFILE VS. MANUALLY

Dockerfiles are the usual way of building container images with Docker, but you could
also build the image manually by running a container from an existing image, execut-
ing commands in the container, exiting the container, and committing the final state
as a new image. This is exactly what happens when you build from a Dockerfile, but
it’s performed automatically and is repeatable, which allows you to make changes to



32

2.15

CHAPTER 2  First steps with Docker and Kubernetes

the Dockerfile and rebuild the image any time, without having to manually retype all
the commands again.

Running the container image

You can now run your image with the following command:

$ docker run --name kubia-container -p 8080:8080 -d kubia

This tells Docker to run a new container called kubia-container from the kubia
image. The container will be detached from the console (-d flag), which means it will
run in the background. Port 8080 on the local machine will be mapped to port 8080
inside the container (-p 8080:8080 option), so you can access the app through
http://localhost:8080.

If you’re not running the Docker daemon on your local machine (if you're using a
Mac or Windows, the daemon is running inside a VM), you’ll need to use the host-
name or IP of the VM running the daemon instead of localhost. You can look it up
through the DOCKER_HOST environment variable.

ACCESSING YOUR APP
Now try to access your application at http://localhost:8080 (be sure to replace local-
host with the hostname or IP of the Docker host if necessary):

$ curl localhost:8080
You’ve hit 44d76963e8el

That’s the response from your app. Your tiny application is now running inside a con-
tainer, isolated from everything else. As you can see, it’s returning 44d76963e8el as its
hostname, and not the actual hostname of your host machine. The hexadecimal num-
ber is the ID of the Docker container.

LISTING ALL RUNNING CONTAINERS
Let’s list all running containers in the following listing, so you can examine the list
(I’'ve edited the output to make it more readable—imagine the last two lines as the
continuation of the first two).

Listing 2.5 Listing running containers

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
44d76963e8el kubia:latest "/bin/sh -c 'node ap 6 minutes ago

STATUS PORTS NAMES
Up 6 minutes 0.0.0.0:8080->8080/tcp kubia-container

A single container is running. For each container, Docker prints out its ID and name,
the image used to run the container, and the command that’s executing inside the
container.


http://localhost:8080
http://localhost:8080

2.1.6

Creating, running, and sharing a container image 33

GETTING ADDITIONAL INFORMATION ABOUT A CONTAINER
The docker ps command only shows the most basic information about the containers.
To see additional information, you can use docker inspect:

$ docker inspect kubia-container

Docker will print out a long JSON containing low-level information about the con-
tainer.

Exploring the inside of a running container

What if you want to see what the environment is like inside the container? Because
multiple processes can run inside the same container, you can always run an addi-
tional process in it to see what’s inside. You can even run a shell, provided that the
shell’s binary executable is available in the image.

RUNNING A SHELL INSIDE AN EXISTING CONTAINER
The Node.js image on which you’ve based your image contains the bash shell, so you
can run the shell inside the container like this:

$ docker exec -it kubia-container bash

This will run bash inside the existing kubia-container container. The bash process
will have the same Linux namespaces as the main container process. This allows you
to explore the container from within and see how Node.js and your app see the system
when running inside the container. The -it option is shorthand for two options:

= -1, which makes sure STDIN is kept open. You need this for entering com-
mands into the shell.
= -t, which allocates a pseudo terminal (TTY).

You need both if you want the use the shell like you’re used to. (If you leave out the
first one, you can’t type any commands, and if you leave out the second one, the com-
mand prompt won’t be displayed and some commands will complain about the TERM
variable not being set.)

EXPLORING THE CONTAINER FROM WITHIN
Let’s see how to use the shell in the following listing to see the processes running in
the container.

Listing 2.6 Listing processes from inside a container

root@44d76963e8el:/# ps aux

USER PID %CPU $MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 676380 16504 7 S1 12:31 0:00 node app.js
root 10 0.0 0.0 20216 1924 » Ss 12:31 0:00 bash

root 19 0.0 0.0 17492 1136 ? R+ 12:38 0:00 ps aux

You see only three processes. You don’t see any other processes from the host OS.



34

217

CHAPTER 2  First steps with Docker and Kubernetes

UNDERSTANDING THAT PROCESSES IN A CONTAINER RUN IN THE HOST OPERATING SYSTEM

If you now open another terminal and list the processes on the host OS itself, you will,
among all other host processes, also see the processes running in the container, as
shown in listing 2.7.

NOTE If you’re using a Mac or Windows, you’ll need to log into the VM where
the Docker daemon is running to see these processes.

Listing 2.7 A container’s processes run in the host 0S

$ ps aux | grep app.js
USER PID %CPU $MEM VSZ RSS TTY STAT START TIME COMMAND
root 382 0.0 0.1 676380 16504 ? S1 12:31 0:00 node app.js

This proves that processes running in the container are running in the host OS. If you
have a keen eye, you may have noticed that the processes have different IDs inside the
container vs. on the host. The container is using its own PID Linux namespace and
has a completely isolated process tree, with its own sequence of numbers.

THE CONTAINER’S FILESYSTEM IS ALSO ISOLATED

Like having an isolated process tree, each container also has an isolated filesystem.
Listing the contents of the root directory inside the container will only show the files
in the container and will include all the files that are in the image plus any files that
are created while the container is running (log files and similar), as shown in the fol-
lowing listing.

Listing 2.8 A container has its own complete filesystem

root@44d76963e8el:/# 1s /
app.js boot etc 1lib media opt root sbin sys usr
bin dev home 1ib64 mnt proc run Srv tmp var

It contains the app.js file and other system directories that are part of the node: 7 base
image you’re using. To exit the container, you exit the shell by running the exit com-
mand and you’ll be returned to your host machine (like logging out of an ssh session,
for example).

TIP Entering a running container like this is useful when debugging an app
running in a container. When something’s wrong, the first thing you’ll want
to explore is the actual state of the system your application sees. Keep in mind
that an application will not only see its own unique filesystem, but also pro-
cesses, users, hostname, and network interfaces.

Stopping and removing a container

To stop your app, you tell Docker to stop the kubia-container container:

$ docker stop kubia-container



218

Creating, running, and sharing a container image 35

This will stop the main process running in the container and consequently stop the
container, because no other processes are running inside the container. The con-
tainer itself still exists and you can see it with docker ps -a. The -a option prints out
all the containers, those running and those that have been stopped. To truly remove a
container, you need to remove it with the docker rm command:

$ docker rm kubia-container
This deletes the container. All its contents are removed and it can’t be started again.

Pushing the image to an image registry

The image you’ve built has so far only been available on your local machine. To allow
you to run it on any other machine, you need to push the image to an external image
registry. For the sake of simplicity, you won’t set up a private image registry and will
instead push the image to Docker Hub (http://hub.docker.com), which is one of the
publicly available registries. Other widely used such registries are Quay.io and the
Google Container Registry.

Before you do that, you need to re-tag your image according to Docker Hub’s
rules. Docker Hub will allow you to push an image if the image’s repository name
starts with your Docker Hub ID. You create your Docker Hub ID by registering at
http://hub.docker.com. I'll use my own ID (luksa) in the following examples. Please
change every occurrence with your own ID.

TAGGING AN IMAGE UNDER AN ADDITIONAL TAG
Once you know your ID, you’re ready to rename your image, currently tagged as
kubia, to luksa/kubia (replace luksa with your own Docker Hub ID):

$ docker tag kubia luksa/kubia

This doesn’t rename the tag; it creates an additional tag for the same image. You can
confirm this by listing the images stored on your system with the docker images com-
mand, as shown in the following listing.

Listing 2.9 A container image can have multiple tags

$ docker images | head

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
luksa/kubia latest d30ecc7419e7 About an hour ago 654.5 MB
kubia latest d30ecc7419e7 About an hour ago 654.5 MB
docker.io/node 7.0 04cOca2a8dad 2 days ago 654.5 MB

As you can see, both kubia and luksa/kubia point to the same image ID, so they’re in
fact one single image with two tags.


http://hub.docker.com
http://hub.docker.com

36

2.2

CHAPTER 2  First steps with Docker and Kubernetes

PUSHING THE IMAGE TO DOCKER HuUB

Before you can push the image to Docker Hub, you need to log in under your user ID
with the docker login command. Once you’re logged in, you can finally push the
yourid/kubia image to Docker Hub like this:

$ docker push luksa/kubia

RUNNING THE IMAGE ON A DIFFERENT MACHINE

After the push to Docker Hub is complete, the image will be available to everyone.
You can now run the image on any machine running Docker by executing the follow-
ing command:

$ docker run -p 8080:8080 -d luksa/kubia

It doesn’t get much simpler than that. And the best thing about this is that your appli-
cation will have the exact same environment every time and everywhere it’s run. If it
ran fine on your machine, it should run as well on every other Linux machine. No
need to worry about whether the host machine has Node.js installed or not. In fact,
even if it does, your app won’t use it, because it will use the one installed inside the
image.

Setting up a Kubernetes cluster

Now that you have your app packaged inside a container image and made available
through Docker Hub, you can deploy it in a Kubernetes cluster instead of running it
in Docker directly. But first, you need to set up the cluster itself.

Setting up a fullfledged, multi-node Kubernetes cluster isn’t a simple task, espe-
cially if you’re not well-versed in Linux and networking administration. A proper
Kubernetes install spans multiple physical or virtual machines and requires the net-
working to be set up properly, so that all the containers running inside the Kuberne-
tes cluster can connect to each other through the same flat networking space.

Along list of methods exists for installing a Kubernetes cluster. These methods are
described in detail in the documentation at http://kubernetes.io. We’re not going to
list all of them here, because the list keeps evolving, but Kubernetes can be run on
your local development machine, your own organization’s cluster of machines, on
cloud providers providing virtual machines (Google Compute Engine, Amazon EC2,
Microsoft Azure, and so on), or by using a managed Kubernetes cluster such as Goo-
gle Kubernetes Engine (previously known as Google Container Engine).

In this chapter, we’ll cover two simple options for getting your hands on a running
Kubernetes cluster. You’ll see how to run a single-node Kubernetes cluster on your
local machine and how to get access to a hosted cluster running on Google Kuberne-
tes Engine (GKE).

A third option, which covers installing a cluster with the kubeadm tool, is explained
in appendix B. The instructions there show you how to set up a three-node Kubernetes


http://kubernetes.io

221

Setting up a Kubernetes cluster 37

cluster using virtual machines, but I suggest you try it only after reading the first 11
chapters of the book.

Another option is to install Kubernetes on Amazon’s AWS (Amazon Web Services).
For this, you can look at the kops tool, which is built on top of kubeadm mentioned in
the previous paragraph, and is available at http://github.com/kubernetes/kops. It
helps you deploy production-grade, highly available Kubernetes clusters on AWS and
will eventually support other platforms as well (Google Kubernetes Engine, VMware,
vSphere, and so on).

Running a local single-node Kubernetes cluster with Minikube

The simplest and quickest path to a fully functioning Kubernetes cluster is by using
Minikube. Minikube is a tool that sets up a single-node cluster that’s great for both
testing Kubernetes and developing apps locally.

Although we can’t show certain Kubernetes features related to managing apps on
multiple nodes, the single-node cluster should be enough for exploring most topics
discussed in this book.

INSTALLING MINIKUBE
Minikube is a single binary that needs to be downloaded and put onto your path. It’s
available for OSX, Linux, and Windows. To install it, the best place to start is to go to
the Minikube repository on GitHub (http://github.com/kubernetes/minikube) and
follow the instructions there.

For example, on OSX and Linux, Minikube can be downloaded and set up with a
single command. For OSX, this is what the command looks like:
$ curl -Lo minikube https://storage.googleapis.com/minikube/releases/

v0.23.0/minikube-darwin-amd64 && chmod +x minikube && sudo mv minikube
/usr/local/bin/

On Linux, you download a different release (replace “darwin” with “linux” in the
URL). On Windows, you can download the file manually, rename it to minikube.exe,
and put it onto your path. Minikube runs Kubernetes inside a VM run through either
VirtualBox or KVM, so you also need to install one of them before you can start the
Minikube cluster.

STARTING A KUBERNETES CLUSTER WITH MINIKUBE
Once you have Minikube installed locally, you can immediately start up the Kuberne-
tes cluster with the command in the following listing.

Listing 2.10 Starting a Minikube virtual machine

$ minikube start

Starting local Kubernetes cluster...
Starting VM...

SSH-ing files into VM...

Kubectl is now configured to use the cluster.


http://github.com/kubernetes/kops
http://github.com/kubernetes/minikube

38

222

CHAPTER 2  First steps with Docker and Kubernetes

Starting the cluster takes more than a minute, so don’t interrupt the command before
it completes.

INSTALLING THE KUBERNETES CLIENT (KUBECTL)

To interact with Kubernetes, you also need the kubectl CLI client. Again, all you need
to do is download it and put it on your path. The latest stable release for OSX, for
example, can be downloaded and installed with the following command:

$ curl -LO https://storage.googleapis.com/kubernetes-release/release
/$(curl -s https://storage.googleapis.com/kubernetes-release/release
/stable.txt) /bin/darwin/amd64/kubectl
&& chmod +x kubectl
&& sudo mv kubectl /usr/local/bin/

To download kubectl for Linux or Windows, replace darwin in the URL with either
linux or windows.

NOTE If you’ll be using multiple Kubernetes clusters (for example, both
Minikube and GKE), refer to appendix A for information on how to set up
and switch between different kubectl contexts.

CHECKING TO SEE THE CLUSTER IS UP AND KUBECTL CAN TALK TO IT
To verify your cluster is working, you can use the kubectl cluster-info command
shown in the following listing.

Listing 2.11 Displaying cluster information

$ kubectl cluster-info

Kubernetes master is running at https://192.168.99.100:8443

KubeDNS is running at https://192.168.99.100:8443/api/vl/proxy/. ..
kubernetes-dashboard is running at https://192.168.99.100:8443/api/vl/...

This shows the cluster is up. It shows the URLs of the various Kubernetes components,
including the API server and the web console.

TIP You can run minikube ssh to log into the Minikube VM and explore it
from the inside. For example, you may want to see what processes are run-
ning on the node.

Using a hosted Kubernetes cluster with Google Kubernetes Engine

If you want to explore a full-fledged multi-node Kubernetes cluster instead, you can
use a managed Google Kubernetes Engine (GKE) cluster. This way, you don’t need to
manually set up all the cluster nodes and networking, which is usually too much for
someone making their first steps with Kubernetes. Using a managed solution such as
GKE makes sure you don’t end up with a misconfigured, non-working, or partially work-
ing cluster.



Setting up a Kubernetes cluster 39

SETTING UP A GOOGLE CLOUD PROJECT AND DOWNLOADING THE NECESSARY CLIENT BINARIES
Before you can set up a new Kubernetes cluster, you need to set up your GKE environ-
ment. Because the process may change, I'm not listing the exact instructions here. To
get started, please follow the instructions at https://cloud.google.com/container-
engine/docs/before-you-begin.

Roughly, the whole procedure includes

1 Signing up for a Google account, in the unlikely case you don’t have one
already.

2 Creating a project in the Google Cloud Platform Console.

2 Enabling billing. This does require your credit card info, but Google provides a
12-month free trial. And they’re nice enough to not start charging automati-
cally after the free trial is over.)

4 Enabling the Kubernetes Engine APL

5 Downloading and installing Google Cloud SDK. (This includes the gcloud
command-line tool, which you’ll need to create a Kubernetes cluster.)

¢ Installing the kubectl command-line tool with gcloud components install
kubectl.

NOTE Certain operations (the one in step 2, for example) may take a few
minutes to complete, so relax and grab a coffee in the meantime.

CREATING A KUBERNETES CLUSTER WITH THREE NODES
After completing the installation, you can create a Kubernetes cluster with three
worker nodes using the command shown in the following listing.

Listing 2.12 Creating a three-node cluster in GKE

$ gcloud container clusters create kubia --num-nodes 3
--machine-type fl-micro
Creating cluster kubia...done.
Created [https://container.googleapis.com/vl/projects/kubial-
1227/zones/europe-westl-d/clusters/kubial .
kubeconfig entry generated for kubia.
NAME ZONE MST VER MASTER IP TYPE NODE VER NUM NODES STATUS
kubia eu-wld 1.5.3 104.155.92.30 fl-micro 1.5.3 3 RUNNING

You should now have a running Kubernetes cluster with three worker nodes as shown
in figure 2.4. You're using three nodes to help better demonstrate features that apply
to multiple nodes. You can use a smaller number of nodes, if you want.

GETTING AN OVERVIEW OF YOUR CLUSTER

To give you a basic idea of what your cluster looks like and how to interact with it, see
figure 2.4. Each node runs Docker, the Kubelet and the kube-proxy. You’ll interact
with the cluster through the kubectl command line client, which issues REST requests
to the Kubernetes API server running on the master node.


https://cloud.google.com/container-engine/docs/before-you-begin
https://cloud.google.com/container-engine/docs/before-you-begin

CHAPTER 2  First steps with Docker and Kubernetes

Kubernetes cluster

Worker nodes

| Docker |

| Kubelet | kube-proxy |

gke-kubia-85f6-node-0rrx

REST call Dock
kubectl REST AP server ocker
| Kubelet | kube-proxy |
Local dev machine Master node gke-kubia-85f6-node-heo1

(IP 104.155.92.30)

| Docker |

| Kubelet | kube-proxy |

gke-kubia-85f6-node-vs9f

Figure 2.4 How you’'re interacting with your three-node Kubernetes cluster

CHECKING IF THE CLUSTER IS UP BY LISTING CLUSTER NODES
You’ll use the kubectl command now to list all the nodes in your cluster, as shown in
the following listing.

Listing 2.13 Listing cluster nodes with kubectl

$ kubectl get nodes

NAME STATUS AGE VERSION
gke-kubia-85f6-node-0rrx Ready 1m v1l.5.3
gke-kubia-85f6-node-heol Ready lm v1.5.3
gke-kubia-85f6-node-vs9f Ready im v1.5.3

The kubectl get command can list all kinds of Kubernetes objects. You'll use it con-
stantly, but it usually shows only the most basic information for the listed objects.

TIP  You can log into one of the nodes with gcloud compute ssh <node-name>
to explore what’s running on the node.



223

Setting up a Kubernetes cluster 41

RETRIEVING ADDITIONAL DETAILS OF AN OBJECT
To see more detailed information about an object, you can use the kubectl describe
command, which shows much more:

$ kubectl describe node gke-kubia-85f6-node-0rrx

I’'m omitting the actual output of the describe command, because it’s fairly wide and
would be completely unreadable here in the book. The output shows the node’s sta-
tus, its CPU and memory data, system information, containers running on the node,
and much more.

In the previous kubectl describe example, you specified the name of the node
explicitly, but you could also have performed a simple kubect1 describe node without
typing the node’s name and it would print out a detailed description of all the nodes.

TIP Running the describe and get commands without specifying the name
of the object comes in handy when only one object of a given type exists, so
you don’t waste time typing or copy/pasting the object’s name.

While we’re talking about reducing keystrokes, let me give you additional advice on
how to make working with kubectl much easier, before we move on to running your
first app in Kubernetes.

Setting up an alias and command-line completion for kubect|

You’ll use kubectl often. You’ll soon realize that having to type the full command
every time is a real pain. Before you continue, take a minute to make your life easier
by setting up an alias and tab completion for kubect1.

CREATING AN ALIAS

Throughout the book, I’ll always be using the full name of the kubectl executable,
but you may want to add a short alias such as k, so you won’t have to type kubectl
every time. If you haven’t used aliases yet, here’s how you define one. Add the follow-
ing line to your ~/.bashrc or equivalent file:

alias k=kubectl

NOTE You may already have the k executable if you used gcloud to set up the
cluster.

CONFIGURING TAB COMPLETION FOR KUBECTL

Even with a short alias such as k, you’ll still need to type way more than you’d like. Luck-
ily, the kubectl command can also output shell completion code for both the bash and
zsh shell. It doesn’t enable tab completion of only command names, but also of the
actual object names. For example, instead of having to write the whole node name in
the previous example, all you'd need to type is

$ kubectl desc<TAB> no<TAB> gke-ku<TAB>



42

2.3

23.1

CHAPTER 2  First steps with Docker and Kubernetes

To enable tab completion in bash, you’ll first need to install a package called bash-
completion and then run the following command (you’ll probably also want to add it
to ~/.bashrc or equivalent):

$ source < (kubectl completion bash)

But there’s one caveat. When you run the preceding command, tab completion will
only work when you use the full kubectl name (it won’t work when you use the k
alias). To fix this, you need to transform the output of the kubectl completion com-
mand a bit:

$ source < (kubectl completion bash | sed s/kubectl/k/g)

NOTE Unfortunately, as I'm writing this, shell completion doesn’t work for
aliases on MacOS. You’ll have to use the full kubectl command name if you
want completion to work.

Now you’re all set to start interacting with your cluster without having to type too
much. You can finally run your first app on Kubernetes.

Running your first app on Kubernetes

Because this may be your first time, you’ll use the simplest possible way of running an
app on Kubernetes. Usually, you’d prepare a JSON or YAML manifest, containing a
description of all the components you want to deploy, but because we haven’t talked
about the types of components you can create in Kubernetes yet, you’ll use a simple
one-line command to get something running.

Deploying your Node.js app

The simplest way to deploy your app is to use the kubectl run command, which will
create all the necessary components without having to deal with JSON or YAML. This
way, we don’t need to dive into the structure of each object yet. Try to run the image
you created and pushed to Docker Hub earlier. Here’s how to run it in Kubernetes:

$ kubectl run kubia --image=luksa/kubia --port=8080 --generator=run/vl
replicationcontroller "kubia" created

The --image=luksa/kubia part obviously specifies the container image you want to
run, and the --port=8080 option tells Kubernetes that your app is listening on port
8080. The last flag (--generator) does require an explanation, though. Usually, you
won’t use it, but you're using it here so Kubernetes creates a ReplicationController
instead of a Deployment. You’ll learn what ReplicationControllers are later in the chap-
ter, but we won’t talk about Deployments until chapter 9. That’s why I don’t want
kubectl to create a Deployment yet.

As the previous command’s output shows, a ReplicationController called kubia
has been created. As already mentioned, we’ll see what that is later in the chapter. For



Running your first app on Kubernetes 43

now, let’s start from the bottom and focus on the container you created (you can
assume a container has been created, because you specified a container image in the
run command).

INTRODUCING PoODS

You may be wondering if you can see your container in a list showing all the running
containers. Maybe something such as kubectl get containers? Well, that’s not exactly
how Kubernetes works. It doesn’t deal with individual containers directly. Instead, it
uses the concept of multiple co-located containers. This group of containers is called
a Pod.

A pod is a group of one or more tightly related containers that will always run
together on the same worker node and in the same Linux namespace(s). Each pod
is like a separate logical machine with its own IP, hostname, processes, and so on,
running a single application. The application can be a single process, running in a
single container, or it can be a main application process and additional supporting
processes, each running in its own container. All the containers in a pod will appear
to be running on the same logical machine, whereas containers in other pods, even
if they’re running on the same worker node, will appear to be running on a differ-
ent one.

To better understand the relationship between containers, pods, and nodes, exam-
ine figure 2.5. As you can see, each pod has its own IP and contains one or more con-
tainers, each running an application process. Pods are spread out across different
worker nodes.

e N N [ ™ e N [ N [ ™
Container Container 1 Container 1 Container Container 1 Container 1
Container 2 Container 2 Container 2
Pod 1 Pod 2 Pod 3 Pod 4 Pod 5 Pod 6
IP: 10.1.0.1 IP:10.1.0.2 IP: 10.1.0.3 IP: 10.1.1.1 IP:10.1.1.2 IP:10.1.1.3
N AN J L J N 2N J L J
Worker node 1 Worker node 2

Figure 2.5 The relationship between containers, pods, and physical worker nodes

LISTING PODS

Because you can’t list individual containers, since they’re not standalone Kubernetes
objects, can you list pods instead? Yes, you can. Let’s see how to tell kubectl to list
pods in the following listing.



44

CHAPTER 2  First steps with Docker and Kubernetes

Listing 2.14 Listing pods

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kubia-4jfyf 0/1 Pending 0 1m

This is your pod. Its status is still Pending and the pod’s single container is shown as
not ready yet (this is what the 0/1 in the READY column means). The reason why the
pod isn’t running yet is because the worker node the pod has been assigned to is
downloading the container image before it can run it. When the download is finished,
the pod’s container will be created and then the pod will transition to the Running
state, as shown in the following listing.

Listing 2.15 Listing pods again to see if the pod’s status has changed

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kubia-4jfyf 1/1 Running 0 5m

To see more information about the pod, you can also use the kubectl describe pod
command, like you did earlier for one of the worker nodes. If the pod stays stuck in
the Pending status, it might be that Kubernetes can’t pull the image from the registry.
If you’re using your own image, make sure it’s marked as public on Docker Hub. To
make sure the image can be pulled successfully, try pulling the image manually with
the docker pull command on another machine.

UNDERSTANDING WHAT HAPPENED BEHIND THE SCENES

To help you visualize what transpired, look at figure 2.6. It shows both steps you had to
perform to get a container image running inside Kubernetes. First, you built the
image and pushed it to Docker Hub. This was necessary because building the image
on your local machine only makes it available on your local machine, but you needed
to make it accessible to the Docker daemons running on your worker nodes.

When you ran the kubectl command, it created a new ReplicationController
object in the cluster by sending a REST HTTP request to the Kubernetes API server.
The ReplicationController then created a new pod, which was then scheduled to one
of the worker nodes by the Scheduler. The Kubelet on that node saw that the pod was
scheduled to it and instructed Docker to pull the specified image from the registry
because the image wasn’t available locally. After downloading the image, Docker cre-
ated and ran the container.

The other two nodes are displayed to show context. They didn’t play any role in
the process, because the pod wasn’t scheduled to them.

DEFINITION The term scheduling means assigning the pod to a node. The
pod is run immediately, not at a time in the future as the term might lead you
to believe.



Kf:::f] 3. kubectl run kubia

Running your first app on Kubernetes

Local dev
machine

1. docker push
luksa/kubia

2. Image<>

luksa/kubia Docker Hub

45

| Docker |

| Kubelet |

gke-kubia-85f6-node-0rrx

| Docker |

| Kubelet |

is pushed to
Docker Hub

Docker

kubectl ——\\

--image=1luksa/kubia
--port=8080

5. Pod created

and scheduled
to a worker node

4. kubectl issues
REST call

&

8. Docker pulls

REST API server

gke-kubia-85f6-node-heo1

pod kubia-4jfyf

&

Scheduler

and runs
luksa/kubia _,| Docker
7. Kubelet
instructs
1 Docker
to run the
image
I Kubelet
6. Kubelet
is notified .
gke-kubia-85f6-node-vs9f

Master node(s)

Figure 2.6 Running the 1uksa/kubia container image in Kubernetes

23.2

Accessing your web application

With your pod running, how do you access it> We mentioned that each pod gets its
own IP address, but this address is internal to the cluster and isn’t accessible from
outside of it. To make the pod accessible from the outside, you’ll expose it through a
Service object. You'll create a special service of type LoadBalancer, because if you cre-

ate a regular service (a ClusterIP service), like the pod, it would also only be accessi-

ble from inside the cluster. By creating a LoadBalancer-type service, an external load
balancer will be created and you can connect to the pod through the load balancer’s

public IP.

CREATING A SERVICE OBJECT
To create the service, you’ll tell Kubernetes to expose the ReplicationController you

created earlier:

$ kubectl expose rc kubia --type=LoadBalancer --name kubia-http
service "kubia-http" exposed



46

CHAPTER 2  First steps with Docker and Kubernetes

NOTE We’re using the abbreviation rc instead of replicationcontroller.
Most resource types have an abbreviation like this so you don’t have to type
the full name (for example, po for pods, svc for services, and so on).

LISTING SERVICES

The expose command’s output mentions a service called kubia-http. Services are
objects like Pods and Nodes, so you can see the newly created Service object by run-
ning the kubectl get services command, as shown in the following listing.

Listing 2.16 Listing Services

$ kubectl get services

NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
kubernetes 10.3.240.1 <none> 443 /TCP 34m
kubia-http 10.3.246.185 <pendings> 8080:31348/TCP 4s

The list shows two services. Ignore the kubernetes service for now and take a close
look at the kubia-http service you created. It doesn’t have an external IP address yet,
because it takes time for the load balancer to be created by the cloud infrastructure
Kubernetes is running on. Once the load balancer is up, the external IP address of the
service should be displayed. Let’s wait a while and list the services again, as shown in
the following listing.

Listing 2.17 Listing services again to see if an external IP has been assigned

$ kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
kubernetes 10.3.240.1 <none> 443 /TCP 35m
kubia-http 10.3.246.185 104.155.74.57 8080:31348/TCP 1m

Aha, there’s the external IP. Your application is now accessible at http://104.155.74
.57:8080 from anywhere in the world.

NOTE Minikube doesn’t support LoadBalancer services, so the service will
never get an external IP. But you can access the service anyway through its
external port. How to do that is described in the next section’s tip.

ACCESSING YOUR SERVICE THROUGH ITS EXTERNAL IP
You can now send requests to your pod through the service’s external IP and port:

$ curl 104.155.74.57:8080
You’ve hit kubia-4jfyf

Woohoo! Your app is now running somewhere in your three-node Kubernetes cluster
(or a single-node cluster if you’re using Minikube). If you don’t count the steps
required to set up the whole cluster, all it took was two simple commands to get your
app running and to make it accessible to users across the world.


http://104.155.74.57:8080
http://104.155.74.57:8080
http://104.155.74.57:8080

233

Running your first app on Kubernetes 47

TIP When using Minikube, you can get the IP and port through which you
can access the service by running minikube service kubia-http.

If you look closely, you’ll see that the app is reporting the name of the pod as its host-
name. As already mentioned, each pod behaves like a separate independent machine
with its own IP address and hostname. Even though the application is running in
the worker node’s operating system, to the app it appears as though it’s running on
a separate machine dedicated to the app itself—no other processes are running
alongside it.

The logical parts of your system

Until now, I’'ve mostly explained the actual physical components of your system. You
have three worker nodes, which are VMs running Docker and the Kubelet, and you
have a master node that controls the whole system. Honestly, we don’t know if a single
master node is hosting all the individual components of the Kubernetes Control Plane
or if they’re split across multiple nodes. It doesn’t really matter, because you're only
interacting with the API server, which is accessible at a single endpoint.

Besides this physical view of the system, there’s also a separate, logical view of it.
I've already mentioned Pods, ReplicationControllers, and Services. All of them will be
explained in the next few chapters, but let’s quickly look at how they fit together and
what roles they play in your little setup.

UNDERSTANDING HOW THE REPLICATIONCONTROLLER, THE POD, AND THE SERVICE FIT TOGETHER

As I've already explained, you're not creating and working with containers directly.
Instead, the basic building block in Kubernetes is the pod. But, you didn’t really cre-
ate any pods either, at least not directly. By running the kubectl run command you
created a ReplicationController, and this ReplicationController is what created the
actual Pod object. To make that pod accessible from outside the cluster, you told
Kubernetes to expose all the pods managed by that ReplicationController as a single
Service. A rough picture of all three elements is presented in figure 2.7.

Incoming Port Port
request 8080 Service: kubia-http 8080 o ) )
——— | Intemal IP: 10.3.246.185 <> Rep"w“ROQCl?C‘::_":er' e
External IP: 104.155.74.57 Racas:
Container

Pod: kubia-4jfyf
IP:10.1.0.1

L

Figure 2.7 Your system consists of a ReplicationController, a Pod, and a Service.




48

2.3.4

CHAPTER 2  First steps with Docker and Kubernetes

UNDERSTANDING THE POD AND ITS CONTAINER

The main and most important component in your system is the pod. It contains only a
single container, but generally a pod can contain as many containers as you want.
Inside the container is your Node.js process, which is bound to port 8080 and is wait-
ing for HTTP requests. The pod has its own unique private IP address and hostname.

UNDERSTANDING THE ROLE OF THE REPLICATIONCONTROLLER

The next component is the kubia ReplicationController. It makes sure there’s always
exactly one instance of your pod running. Generally, ReplicationControllers are used
to replicate pods (that is, create multiple copies of a pod) and keep them running. In
your case, you didn’t specify how many pod replicas you want, so the Replication-
Controller created a single one. If your pod were to disappear for any reason, the
ReplicationController would create a new pod to replace the missing one.

UNDERSTANDING WHY YOU NEED A SERVICE

The third component of your system is the kubia-http service. To understand why
you need services, you need to learn a key detail about pods. They’re ephemeral. A
pod may disappear at any time—because the node it’s running on has failed, because
someone deleted the pod, or because the pod was evicted from an otherwise healthy
node. When any of those occurs, a missing pod is replaced with a new one by the
ReplicationController, as described previously. This new pod gets a different IP
address from the pod it’s replacing. This is where services come in—to solve the prob-
lem of ever-changing pod IP addresses, as well as exposing multiple pods at a single
constant IP and port pair.

When a service is created, it gets a static IP, which never changes during the lifetime of
the service. Instead of connecting to pods directly, clients should connect to the service
through its constant IP address. The service makes sure one of the pods receives the con-
nection, regardless of where the pod is currently running (and what its IP address is).

Services represent a static location for a group of one or more pods that all provide
the same service. Requests coming to the IP and port of the service will be forwarded
to the IP and port of one of the pods belonging to the service at that moment.

Horizontally scaling the application

You now have a running application, monitored and kept running by a Replication-
Controller and exposed to the world through a service. Now let’s make additional
magic happen.

One of the main benefits of using Kubernetes is the simplicity with which you can
scale your deployments. Let’s see how easy it is to scale up the number of pods. You'll
increase the number of running instances to three.

Your pod is managed by a ReplicationController. Let’s see it with the kubectl get
command:
$ kubectl get replicationcontrollers

NAME DESIRED CURRENT AGE
kubia 1 1 17m


http://www.allitebooks.org

Running your first app on Kubernetes 49

Listing all the resource types with kubectl get

You've been using the same basic kubectl get command to list things in your cluster.
You've used this command to list Node, Pod, Service and ReplicationController
objects. You can get a list of all the possible object types by invoking kubectl get
without specifying the type. You can then use those types with various kubectl
commands such as get, describe, and so on. The list also shows the abbreviations
| mentioned earlier.

The list shows a single ReplicationController called kubia. The DESIRED column
shows the number of pod replicas you want the ReplicationController to keep,
whereas the CURRENT column shows the actual number of pods currently running. In
your case, you wanted to have a single replica of the pod running, and exactly one
replica is currently running.

INCREASING THE DESIRED REPLICA COUNT
To scale up the number of replicas of your pod, you need to change the desired
replica count on the ReplicationController like this:

$ kubectl scale rc kubia --replicas=3
replicationcontroller "kubia" scaled

You’ve now told Kubernetes to make sure three instances of your pod are always run-
ning. Notice that you didn’t instruct Kubernetes what action to take. You didn’t tell it
to add two more pods. You only set the new desired number of instances and let
Kubernetes determine what actions it needs to take to achieve the requested state.

This is one of the most fundamental Kubernetes principles. Instead of telling
Kubernetes exactly what actions it should perform, you’re only declaratively changing
the desired state of the system and letting Kubernetes examine the current actual
state and reconcile it with the desired state. This is true across all of Kubernetes.

SEEING THE RESULTS OF THE SCALE-OUT

Back to your replica count increase. Let’s list the ReplicationControllers again to see
the updated replica count:

$ kubectl get rc

NAME DESIRED CURRENT READY AGE
kubia 3 3 2 17m

Because the actual number of pods has already been increased to three (as evident
from the CURRENT column), listing all the pods should now show three pods instead
of one:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
kubia-hczji 1/1 Running 0 7s
kubia-ig9y6 0/1 Pending 0 7s

kubia-4jfyf 1/1 Running 0 18m



50

CHAPTER 2  First steps with Docker and Kubernetes

As you can see, three pods exist instead of one. Two are already running, one is still
pending, but should be ready in a few moments, as soon as the container image is
downloaded and the container is started.

As you can see, scaling an application is incredibly simple. Once your app is run-
ning in production and a need to scale the app arises, you can add additional
instances with a single command without having to install and run additional copies
manually.

Keep in mind that the app itself needs to support being scaled horizontally. Kuber-
netes doesn’t magically make your app scalable; it only makes it trivial to scale the app
up or down.

SEEING REQUESTS HIT ALL THREE PODS WHEN HITTING THE SERVICE
Because you now have multiple instances of your app running, let’s see what happens
if you hit the service URL again. Will you always hit the same app instance or not?

$ curl 104.155.74.57:8080
You’ve hit kubia-hczji
$ curl 104.155.74.57:8080
You’ve hit kubia-ig9y6
$ curl 104.155.74.57:8080
You’ve hit kubia-ig9y6
$ curl 104.155.74.57:8080
You’ve hit kubia-4jfyf

Requests are hitting different pods randomly. This is what services in Kubernetes do
when more than one pod instance backs them. They act as a load balancer standing in
front of multiple pods. When there’s only one pod, services provide a static address
for the single pod. Whether a service is backed by a single pod or a group of pods,
those pods come and go as they’re moved around the cluster, which means their IP
addresses change, but the service is always there at the same address. This makes it
easy for clients to connect to the pods, regardless of how many exist and how often
they change location.

VISUALIZING THE NEW STATE OF YOUR SYSTEM
Let’s visualize your system again to see what’s changed from before. Figure 2.8
shows the new state of your system. You still have a single service and a single
ReplicationController, but you now have three instances of your pod, all managed
by the ReplicationController. The service no longer sends all requests to a single
pod, but spreads them across all three pods as shown in the experiment with curl
in the previous section.

As an exercise, you can now try spinning up additional instances by increasing the
ReplicationController’s replica count even further and then scaling back down.



23.5

Running your first app on Kubernetes 51

Incoming Port
request 8080 Service: kubia-http
Internal IP: 10.3.246.185
External IP: 104.155.74.57
7 N\
(" Port N ( Port N Port h
8080 8080 8080
<> O <> ReplicationController: kubia
Replicas: 3
Container Container Container
Pod: kubia-4jfyf Pod: kubia-hczji Pod: kubia-iq9y6
IP: 10.1.0.1 IP: 10.1.0.2 IP: 10.1.0.3
J U J U

L L L

Figure 2.8 Three instances of a pod managed by the same ReplicationController and exposed
through a single service IP and port.

Examining what nodes your app is running on

You may be wondering what nodes your pods have been scheduled to. In the Kuber-
netes world, what node a pod is running on isn’t that important, as long as it gets
scheduled to a node that can provide the CPU and memory the pod needs to run
properly.

Regardless of the node they’re scheduled to, all the apps running inside contain-
ers have the same type of OS environment. Each pod has its own IP and can talk to
any other pod, regardless of whether that other pod is also running on the same node
or on a different one. Each pod is provided with the requested amount of computa-
tional resources, so whether those resources are provided by one node or another
doesn’t make any difference.

DISPLAYING THE POD IP AND THE POD’S NODE WHEN LISTING PODS
If you’ve been paying close attention, you probably noticed that the kubectl get pods
command doesn’t even show any information about the nodes the pods are scheduled
to. This is because it’s usually not an important piece of information.

But you can request additional columns to display using the -o wide option. When
listing pods, this option shows the pod’s IP and the node the pod is running on:

$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IPp NODE
kubia-hczji 1/1 Running 0 7s 10.1.0.2 gke-kubia-85...



52

2.3.6

CHAPTER 2  First steps with Docker and Kubernetes

INSPECTING OTHER DETAILS OF A POD WITH KUBECTL DESCRIBE
You can also see the node by using the kubectl describe command, which shows
many other details of the pod, as shown in the following listing.

Listing 2.18 Describing a pod with kubectl describe

$ kubectl describe pod kubia-hczji

Name : kubia-hczji
Namespace: default
Node: gke-kubia-85f6-node-vs9£/10.132.0.3 6441 Here’s the node the pod
Start Time: Fri, 29 Apr 2016 14:12:33 +0200 has been scheduled to.
Labels: run=kubia
Status: Running
IP: 10.1.0.2
Controllers: ReplicationController/kubia
Containers:
Conditions:
Type Status
Ready True
Volumes:
Events:

This shows, among other things, the node the pod has been scheduled to, the time
when it was started, the image(s) it’s running, and other useful information.

Introducing the Kubernetes dashboard

Before we wrap up this initial hands-on chapter, let’s look at another way of exploring
your Kubernetes cluster.

Up to now, you’ve only been using the kubectl command-line tool. If you’re more
into graphical web user interfaces, you’ll be glad to hear that Kubernetes also comes
with a nice (but still evolving) web dashboard.

The dashboard allows you to list all the Pods, ReplicationControllers, Services, and
other objects deployed in your cluster, as well as to create, modify, and delete them.
Figure 2.9 shows the dashboard.

Although you won’t use the dashboard in this book, you can open it up any time to
quickly see a graphical view of what’s deployed in your cluster after you create or mod-
ify objects through kubectl.

ACCESSING THE DASHBOARD WHEN RUNNING KUBERNETES IN GKE
If you're using Google Kubernetes Engine, you can find out the URL of the dash-
board through the kubectl cluster-info command, which we already introduced:

$ kubectl cluster-info | grep dashboard
kubernetes-dashboard is running at https://104.155.108.191/api/vl/proxy/
namespaces/kube-system/services/kubernetes-dashboard



Summary 53

o Wige ] = |5 =
© Kubernetes Dashbo: x \|_\
< C | ® 192.168.99.100:30000/#/workload Q% @ &l e
= kubernetes Workloads + CREATE
Admin
CPU usage Memory usage @
Namespaces
Nodes % oom %11,9 Mi
Persistent Volumes g 3338? :>/~ 32 Mi /
2 0.0003 g o2 M
© 2325 23:26 23:30 23:33 2336 23:39 2 23:25 23:26 23:30 23:33 23:36  23:39
Namespace Time Time
default  ~
Workloads Replication Controllers
Deployments Name Labels Pods Age Images
Replica Sets @ kubia run: kubia 3/3 an hour luksa/kubia
Replication Controllers
Daemon Sets
Pods
Stateful Sets.
Jobs Name Status Restarts Age CPU (cores) Memory (bytes)
e @ kubiabgfs0 Running 0 5 minutes 0 2 =
STy @ kubia-rvbpw Running 0 an hour 0 s sov =
sariees @ kubiazimwt Running 0 5 minutes 0 i =

Figure 2.9 Screenshot of the Kubernetes web-based dashboard

24

If you open this URL in a browser, you're presented with a username and password
prompt. You’ll find the username and password by running the following command:

$ gcloud container clusters describe kubia | grep -E " (username|password):"
password: 32nENgreEJ632A12
username: admin The username and password

for the dashboard

ACCESSING THE DASHBOARD WHEN USING MINIKUBE
To open the dashboard in your browser when using Minikube to run your Kubernetes
cluster, run the following command:

$ minikube dashboard

The dashboard will open in your default browser. Unlike with GKE, you won’t need to
enter any credentials to access it.

Summary
Hopefully, this initial hands-on chapter has shown you that Kubernetes isn’t a compli-
cated platform to use, and you're ready to learn in depth about all the things it can
provide. After reading this chapter, you should now know how to
= Pull and run any publicly available container image
= Package your apps into container images and make them available to anyone by
pushing the images to a remote image registry



54

CHAPTER 2  First steps with Docker and Kubernetes

Enter a running container and inspect its environment

Set up a multi-node Kubernetes cluster on Google Kubernetes Engine
Configure an alias and tab completion for the kubectl command-line tool

List and inspect Nodes, Pods, Services, and ReplicationControllers in a Kuber-
netes cluster

Run a container in Kubernetes and make it accessible from outside the cluster
Have a basic sense of how Pods, ReplicationControllers, and Services relate to
one another

Scale an app horizontally by changing the ReplicationController’s replica count
Access the web-based Kubernetes dashboard on both Minikube and GKE



Pods: runnming
containers in Kubernetes

This chapter covers

Creating, running, and stopping pods
Organizing pods and other resources with labels
Performing an operation on all pods with a
specific label

Using namespaces to split pods into non-
overlapping groups

Scheduling pods onto specific types of worker
nodes

The previous chapter should have given you a rough picture of the basic compo-
nents you create in Kubernetes and at least an outline of what they do. Now, we’ll
start reviewing all types of Kubernetes objects (or resources) in greater detail, so
you’ll understand when, how, and why to use each of them. We’ll start with pods,
because they're the central, most important, concept in Kubernetes. Everything
else either manages, exposes, or is used by pods.

55



56

3.1

3.1.1

CHAPTER 3  Pods: running containers in Kubernetes

Introducing pods

You've already learned that a pod is a co-located group of containers and represents
the basic building block in Kubernetes. Instead of deploying containers individually,
you always deploy and operate on a pod of containers. We’re not implying that a pod
always includes more than one container—it’s common for pods to contain only a sin-
gle container. The key thing about pods is that when a pod does contain multiple con-
tainers, all of them are always run on a single worker node—it never spans multiple
worker nodes, as shown in figure 3.1.

e N [ ™ e N [ ™
Container Container 1 \ / Container 1 Container 1
|:| Container 1 Container 2 |:|
Container 2 Pod 3 Container 2
Pod 1 Pod 2 / \\ Pod 4 Pod 5
IP:10.1.0.1 IP: 10.1.0.2 IP:10.1.1.2 IP:10.1.1.3
N J L J N J L J
Node 1 Node 2

Figure 3.1 All containers of a pod run on the same node. A pod never spans two nodes.

Understanding why we need pods

But why do we even need pods? Why can’t we use containers directly? Why would we
even need to run multiple containers together? Can’t we put all our processes into a
single container? We’ll answer those questions now.

UNDERSTANDING WHY MULTIPLE CONTAINERS ARE BETTER THAN ONE CONTAINER RUNNING
MULTIPLE PROCESSES
Imagine an app consisting of multiple processes that either communicate through
IPC (Inter-Process Communication) or through locally stored files, which requires
them to run on the same machine. Because in Kubernetes you always run processes in
containers and each container is much like an isolated machine, you may think it
makes sense to run multiple processes in a single container, but you shouldn’t do that.
Containers are designed to run only a single process per container (unless the
process itself spawns child processes). If you run multiple unrelated processes in a
single container, it is your responsibility to keep all those processes running, man-
age their logs, and so on. For example, you’d have to include a mechanism for auto-
matically restarting individual processes if they crash. Also, all those processes would
log to the same standard output, so you’d have a hard time figuring out what pro-
cess logged what.



3.1.2

Introducing pods 57

Therefore, you need to run each process in its own container. That’s how Docker
and Kubernetes are meant to be used.

Understanding pods

Because you’re not supposed to group multiple processes into a single container, it’s
obvious you need another higher-level construct that will allow you to bind containers
together and manage them as a single unit. This is the reasoning behind pods.

A pod of containers allows you to run closely related processes together and pro-
vide them with (almost) the same environment as if they were all running in a single
container, while keeping them somewhat isolated. This way, you get the best of both
worlds. You can take advantage of all the features containers provide, while at the
same time giving the processes the illusion of running together.

UNDERSTANDING THE PARTIAL ISOLATION BETWEEN CONTAINERS OF THE SAME POD

In the previous chapter, you learned that containers are completely isolated from
each other, but now you see that you want to isolate groups of containers instead of
individual ones. You want containers inside each group to share certain resources,
although not all, so that they’re not fully isolated. Kubernetes achieves this by config-
uring Docker to have all containers of a pod share the same set of Linux namespaces
instead of each container having its own set.

Because all containers of a pod run under the same Network and UTS namespaces
(we’re talking about Linux namespaces here), they all share the same hostname and
network interfaces. Similarly, all containers of a pod run under the same IPC namespace
and can communicate through IPC. In the latest Kubernetes and Docker versions, they
can also share the same PID namespace, but that feature isn’t enabled by default.

NOTE When containers of the same pod use separate PID namespaces, you
only see the container’s own processes when running ps aux in the container.

But when it comes to the filesystem, things are a little different. Because most of the
container’s filesystem comes from the container image, by default, the filesystem of
each container is fully isolated from other containers. However, it’s possible to have
them share file directories using a Kubernetes concept called a Volume, which we’ll
talk about in chapter 6.

UNDERSTANDING HOW CONTAINERS SHARE THE SAME IP AND PORT SPACE

One thing to stress here is that because containers in a pod run in the same Network
namespace, they share the same IP address and port space. This means processes run-
ning in containers of the same pod need to take care not to bind to the same port
numbers or they’ll run into port conflicts. But this only concerns containers in the
same pod. Containers of different pods can never run into port conflicts, because
each pod has a separate port space. All the containers in a pod also have the same
loopback network interface, so a container can communicate with other containers in
the same pod through localhost.



58

3.1.3

CHAPTER 3  Pods: running containers in Kubernetes

INTRODUCING THE FLAT INTER-POD NETWORK

All pods in a Kubernetes cluster reside in a single flat, shared, network-address space
(shown in figure 3.2), which means every pod can access every other pod at the other
pod’s IP address. No NAT (Network Address Translation) gateways exist between them.
When two pods send network packets between each other, they’ll each see the actual
IP address of the other as the source IP in the packet.

e N\ e N e N e N
Container 1 Container 1 Container 1 Container 1
Container 2 Container 2 Container 2 Container 2

Pod A Pod B Pod C Pod D
IP: 10.1.1.6 IP: 10.1.1.7 IP: 10.1.2.5 IP:10.1.2.7
AN J A J AN J A J

Node 1

Node 2

Flat network

Figure 3.2 Each pod gets a routable IP address and all other pods see the pod under
that IP address.

Consequently, communication between pods is always simple. It doesn’t matter if two
pods are scheduled onto a single or onto different worker nodes; in both cases the
containers inside those pods can communicate with each other across the flat NAT-
less network, much like computers on a local area network (LAN), regardless of the
actual inter-node network topology. Like a computer on a LAN, each pod gets its own
IP address and is accessible from all other pods through this network established spe-
cifically for pods. This is usually achieved through an additional software-defined net-
work layered on top of the actual network.

To sum up what’s been covered in this section: pods are logical hosts and behave
much like physical hosts or VMs in the non-container world. Processes running in the
same pod are like processes running on the same physical or virtual machine, except
that each process is encapsulated in a container.

Organizing containers across pods properly

You should think of pods as separate machines, but where each one hosts only a cer-
tain app. Unlike the old days, when we used to cram all sorts of apps onto the same
host, we don’t do that with pods. Because pods are relatively lightweight, you can have
as many as you need without incurring almost any overhead. Instead of stuffing every-
thing into a single pod, you should organize apps into multiple pods, where each one
contains only tightly related components or processes.



Introducing pods 59

Having said that, do you think a multi-tier application consisting of a frontend
application server and a backend database should be configured as a single pod or as
two pods?

SPLITTING MULTI-TIER APPS INTO MULTIPLE PODS

Although nothing is stopping you from running both the frontend server and the
database in a single pod with two containers, it isn’t the most appropriate way. We’ve
said that all containers of the same pod always run co-located, but do the web server
and the database really need to run on the same machine? The answer is obviously no,
so you don’t want to put them into a single pod. But is it wrong to do so regardless? In
a way, it is.

If both the frontend and backend are in the same pod, then both will always be
run on the same machine. If you have a two-node Kubernetes cluster and only this sin-
gle pod, you’ll only be using a single worker node and not taking advantage of the
computational resources (CPU and memory) you have at your disposal on the second
node. Splitting the pod into two would allow Kubernetes to schedule the frontend to
one node and the backend to the other node, thereby improving the utilization of
your infrastructure.

SPLITTING INTO MULTIPLE PODS TO ENABLE INDIVIDUAL SCALING

Another reason why you shouldn’t put them both into a single pod is scaling. A pod is
also the basic unit of scaling. Kubernetes can’t horizontally scale individual contain-
ers; instead, it scales whole pods. If your pod consists of a frontend and a backend con-
tainer, when you scale up the number of instances of the pod to, let’s say, two, you end
up with two frontend containers and two backend containers.

Usually, frontend components have completely different scaling requirements
than the backends, so we tend to scale them individually. Not to mention the fact that
backends such as databases are usually much harder to scale compared to (stateless)
frontend web servers. If you need to scale a container individually, this is a clear indi-
cation that it needs to be deployed in a separate pod.

UNDERSTANDING WHEN TO USE MULTIPLE CONTAINERS IN A POD
The main reason to put multiple containers into a single pod is when the application
consists of one main process and one or more complementary processes, as shown in

figure 3.3.
s N
Main container
Supporting —
container 1
Volume
Supporting
container 2
Figure 3.3 Pods should contain tightly coupled
Pod containers, usually a main container and containers

N _  that support the main one.




60

CHAPTER 3  Pods: running containers in Kubernetes

For example, the main container in a pod could be a web server that serves files from
a certain file directory, while an additional container (a sidecar container) periodi-
cally downloads content from an external source and stores it in the web server’s
directory. In chapter 6 you’ll see that you need to use a Kubernetes Volume that you
mount into both containers.

Other examples of sidecar containers include log rotators and collectors, data pro-
cessors, communication adapters, and others.

DECIDING WHEN TO USE MULTIPLE CONTAINERS IN A POD

To recap how containers should be grouped into pods—when deciding whether to
put two containers into a single pod or into two separate pods, you always need to ask
yourself the following questions:

Do they need to be run together or can they run on different hosts?
Do they represent a single whole or are they independent components?
Must they be scaled together or individually?

Basically, you should always gravitate toward running containers in separate pods,
unless a specific reason requires them to be part of the same pod. Figure 3.4 will help
you memorize this.

Y
— e Frontend
process
Frontend
\ / \ process / Frontend
N Frontend /] N /1 container
\\ process // Frontend
AN Z ontain Frontend pod
B d N7 ~ @@
= < —
/ \ }écke
) process
Y Container N // \\ Backend
/ \ / Backend \ process
container
Backend
bod . container
- ~ @@

Backend pod

Figure 3.4 A container shouldn’t run multiple processes. A pod shouldn’t contain multiple
containers if they don’t need to run on the same machine.

Although pods can contain multiple containers, to keep things simple for now, you’ll
only be dealing with single-container pods in this chapter. You’ll see how multiple
containers are used in the same pod later, in chapter 6.



3.2

321

Creating pods from YAML or JSON descriptors 61

Creating pods from YAML or JSON descriptors

Pods and other Kubernetes resources are usually created by posting a JSON or YAML
manifest to the Kubernetes REST API endpoint. Also, you can use other, simpler ways
of creating resources, such as the kubectl run command you used in the previous
chapter, but they usually only allow you to configure a limited set of properties, not
all. Additionally, defining all your Kubernetes objects from YAML files makes it possi-
ble to store them in a version control system, with all the benefits it brings.

To configure all aspects of each type of resource, you’ll need to know and under-
stand the Kubernetes API object definitions. You’ll get to know most of them as you
learn about each resource type throughout this book. We won’t explain every single
property, so you should also refer to the Kubernetes API reference documentation at
http://kubernetes.io/docs/reference/ when creating objects.

Examining a YAML descriptor of an existing pod

You already have some existing pods you created in the previous chapter, so let’s look
at what a YAML definition for one of those pods looks like. You’ll use the kubectl get
command with the -o yaml option to get the whole YAML definition of the pod, as
shown in the following listing.

Listing 3.1 Full YAML of a deployed pod

Kubernetes API version used
in this YAML descriptor

$ kubectl get po kubia-zxzij -o yaml
Type of Kubernetes

apivVersion: vl < ‘ ;
kind: Pod 4 object/resource
metadata:

annotations:

kubernetes.io/created-by:
creationTimestamp: 2016-03-18T12:37:50Z
generateName: kubia-
labels:

run: kubia
name: kubia-zxzij
namespace: default
resourceVersion: "294"
selfLink: /api/vl/namespaces/default/pods/kubia-zxzij
uid: 3a564dc0-ed06-11le5-ba3b-42010a£00004

spec:

containers:
- image: luksa/kubia

imagePullPolicy: IfNotPresent

name: kubia

ports:

- containerPort: 8080

protocol: TCP
resources:
requests:
cpu: 100m v

Pod metadata (name,
labels, annotations,
and so on)

Pod specification/
contents (list of
pod’s containers,
volumes, and so on)



http://kubernetes.io/docs/reference/

CHAPTER 3  Pods: running containers in Kubernetes

terminationMessagePath: /dev/termination-log A
volumeMounts:
- mountPath: /var/run/secrets/k8s.io/servacc
name: default-token-kvcga
readOnly: true
dnsPolicy: ClusterFirst
nodeName: gke-kubia-e8fe08b8-node-txje
restartPolicy: Always
serviceAccount: default
serviceAccountName: default
terminationGracePeriodSeconds: 30

Pod specification/
contents (list of
pod’s containers,
volumes, and so on)

volumes:
- name: default-token-kvcga
secret:
secretName: default-token-kvcga
status:
conditions:

- lastProbeTime: null
lastTransitionTime: null
status: "True"
type: Ready
containerStatuses:
- containerID: docker://f0276994322d247ba. ..
image: luksa/kubia

imageID: docker://4c325bcc6b40cll0226b89fe. . . Detailed status
lastState: {} of the pod and
name: kubia its containers

ready: true

restartCount: 0

state:

running:
startedAt: 2016-03-18T12:46:052

hostIP: 10.132.0.4
phase: Running
podIP: 10.0.2.3
startTime: 2016-03-18T12:44:32Z

I know this looks complicated, but it becomes simple once you understand the basics
and know how to distinguish between the important parts and the minor details. Also,
you can take comfort in the fact that when creating a new pod, the YAML you need to
write is much shorter, as you'll see later.

INTRODUCING THE MAIN PARTS OF A POD DEFINITION

The pod definition consists of a few parts. First, there’s the Kubernetes API version
used in the YAML and the type of resource the YAML is describing. Then, three
important sections are found in almost all Kubernetes resources:

Metadata includes the name, namespace, labels, and other information about
the pod.

Spec contains the actual description of the pod’s contents, such as the pod’s con-
tainers, volumes, and other data.



3.2.2

Creating pods from YAML or JSON descriptors 63

= Status contains the current information about the running pod, such as what
condition the pod is in, the description and status of each container, and the
pod’s internal IP and other basic info.

Listing 3.1 showed a full description of a running pod, including its status. The status
part contains read-only runtime data that shows the state of the resource at a given
moment. When creating a new pod, you never need to provide the status part.

The three parts described previously show the typical structure of a Kubernetes
API object. As you’ll see throughout the book, all other objects have the same anat-
omy. This makes understanding new objects relatively easy.

Going through all the individual properties in the previous YAML doesn’t make
much sense, so, instead, let’s see what the most basic YAML for creating a pod looks
like.

Creating a simple YAML descriptor for a pod

You’re going to create a file called kubia-manual.yaml (you can create it in any
directory you want), or download the book’s code archive, where you’ll find the
file inside the Chapter03 directory. The following listing shows the entire contents
of the file.

Listing 3.2 A basic pod manifest: kubia-manual.yaml

Descriptor conforms

to version vl of You’re
Kubernetes API describing a pod.
apivVersion: vl
kind: Pod 4 The name
metadata: OfthePOd
name: kubia-manual
spec: . .
containers QJ Contamer. image to create
- image: luksa/kubia the container from
name: kubia <
ports: ‘ Name of the container
- containerPort: 8080
protocol: TCP qw The port the app
is listening on

I'm sure you’ll agree this is much simpler than the definition in listing 3.1. Let’s exam-
ine this descriptor in detail. It conforms to the v1 version of the Kubernetes API. The
type of resource you’re describing is a pod, with the name kubia-manual. The pod
consists of a single container based on the luksa/kubia image. You've also given a
name to the container and indicated that it’s listening on port 8080.

SPECIFYING CONTAINER PORTS
Specifying ports in the pod definition is purely informational. Omitting them has no
effect on whether clients can connect to the pod through the port or not. If the con-



64

CHAPTER 3  Pods: running containers in Kubernetes

tainer is accepting connections through a port bound to the 0.0.0.0 address, other
pods can always connect to it, even if the portisn’tlisted in the pod spec explicitly. But
it makes sense to define the ports explicitly so that everyone using your cluster can
quickly see what ports each pod exposes. Explicitly defining ports also allows you to
assign a name to each port, which can come in handy, as you’ll see later in the book.

Using kubectl explain to discover possible API object fields

When preparing a manifest, you can either turn to the Kubernetes reference
documentation at http://kubernetes.io/docs/api to see which attributes are
supported by each API object, or you can use the kubectl explain command.

For example, when creating a pod manifest from scratch, you can start by asking
kubectl to explain pods:

$ kubectl explain pods

DESCRIPTION:

Pod is a collection of containers that can run on a host. This resource
is created by clients and scheduled onto hosts.

FIELDS:
kind <string>
Kind is a string value representing the REST resource this object
represents. ..

metadata <Objects>
Standard object's metadata. ..

spec <Object>
Specification of the desired behavior of the pod...

status <Object>
Most recently observed status of the pod. This data may not be up to
date. ..

Kubectl prints out the explanation of the object and lists the attributes the object
can contain. You can then drill deeper to find out more about each attribute. For
example, you can examine the spec attribute like this:

$ kubectl explain pod.spec
RESOURCE: spec <Objects>

DESCRIPTION:
Specification of the desired behavior of the pod...
podSpec is a description of a pod.

FIELDS:
hostPID <booleans>
Use the host's pid namespace. Optional: Default to false.

volumes <[]Object>
List of volumes that can be mounted by containers belonging to the
pod.


http://kubernetes.io/docs/api

3.2.3

3.24

Creating pods from YAML or JSON descriptors 65

Containers <[]Object> -required-
List of containers belonging to the pod. Containers cannot currently
Be added or removed. There must be at least one container in a pod.
Cannot be updated. More info:
http://releases.k8s.io/release-1.4/docs/user-guide/containers.md

Using kubectl create to create the pod

To create the pod from your YAML file, use the kubectl create command:

$ kubectl create -f kubia-manual.yaml
pod "kubia-manual" created

The kubectl create -f command is used for creating any resource (not only pods)
from a YAML or JSON file.

RETRIEVING THE WHOLE DEFINITION OF A RUNNING POD

After creating the pod, you can ask Kubernetes for the full YAML of the pod. You’ll
see it’s similar to the YAML you saw earlier. You’ll learn about the additional fields
appearing in the returned definition in the next sections. Go ahead and use the fol-
lowing command to see the full descriptor of the pod:

$ kubectl get po kubia-manual -o yaml

If you’re more into JSON, you can also tell kubectl to return JSON instead of YAML
like this (this works even if you used YAML to create the pod):

$ kubectl get po kubia-manual -o json

SEEING YOUR NEWLY CREATED POD IN THE LIST OF PODS
Your pod has been created, but how do you know if it’s running? Let’s list pods to see
their statuses:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
kubia-manual 1/1 Running 0 32s
kubia-zxzij 1/1 Running 0 1d

There’s your kubia-manual pod. Its status shows that it’s running. If you’re like me,
you’ll probably want to confirm that’s true by talking to the pod. You’ll do that in a
minute. First, you’ll look at the app’s log to check for any errors.

Viewing application logs

Your little Node.js application logs to the process’s standard output. Containerized
applications usually log to the standard output and standard error stream instead of



66

3.2.5

CHAPTER 3  Pods: running containers in Kubernetes

writing their logs to files. This is to allow users to view logs of different applications in
a simple, standard way.

The container runtime (Docker in your case) redirects those streams to files and
allows you to get the container’s log by running

$ docker logs <container id>

You could use ssh to log into the node where your pod is running and retrieve its logs
with docker logs, but Kubernetes provides an easier way.

RETRIEVING A POD’S LOG WITH KUBECTL LOGS
To see your pod’s log (more precisely, the container’s log) you run the following com-
mand on your local machine (no need to ssh anywhere):

$ kubectl logs kubia-manual
Kubia server starting...

You haven’t sent any web requests to your Node.js app, so the log only shows a single
log statement about the server starting up. As you can see, retrieving logs of an appli-
cation running in Kubernetes is incredibly simple if the pod only contains a single
container.

NOTE Container logs are automatically rotated daily and every time the log file
reaches 10MB in size. The kubectl logs command only shows the log entries
from the last rotation.

SPECIFYING THE CONTAINER NAME WHEN GETTING LOGS OF A MULTI-CONTAINER POD

If your pod includes multiple containers, you have to explicitly specify the container
name by including the -c <container name> option when running kubectl logs. In
your kubia-manual pod, you set the container’s name to kubia, so if additional con-
tainers exist in the pod, you’d have to get its logs like this:

$ kubectl logs kubia-manual -c kubia
Kubia server starting...

Note that you can only retrieve container logs of pods that are still in existence. When
a pod is deleted, its logs are also deleted. To make a pod’s logs available even after the
pod is deleted, you need to set up centralized, cluster-wide logging, which stores all
the logs into a central store. Chapter 17 explains how centralized logging works.

Sending requests to the pod

The pod is now running—at least that’s what kubectl get and your app’s log say. But
how do you see it in action? In the previous chapter, you used the kubectl expose
command to create a service to gain access to the pod externally. You're not going to
do that now, because a whole chapter is dedicated to services, and you have other ways
of connecting to a pod for testing and debugging purposes. One of them is through
port forwarding.



3.3

Organizing pods with labels 67

FORWARDING A LOCAL NETWORK PORT TO A PORT IN THE POD

When you want to talk to a specific pod without going through a service (for debug-
ging or other reasons), Kubernetes allows you to configure port forwarding to the
pod. This is done through the kubectl port-forward command. The following
command will forward your machine’s local port 8888 to port 8080 of your kubia-
manual pod:

$ kubectl port-forward kubia-manual 8888:8080
Forwarding from 127.0.0.1:8888 -> 8080
Forwarding from [::1]:8888 -> 8080

The port forwarder is running and you can now connect to your pod through the
local port.

CONNECTING TO THE POD THROUGH THE PORT FORWARDER
In a different terminal, you can now use curl to send an HTTP request to your pod
through the kubectl port-forward proxy running on localhost:8888:

$ curl localhost:8888
You’ve hit kubia-manual

Figure 3.5 shows an overly simplified view of what happens when you send the request.
In reality, a couple of additional components sit between the kubectl process and the
pod, but they aren’t relevant right now.

Port Port
8888 8080
S kubectl Pod
ISErEE RG] kubia-manua
process
Local machine Kubernetes cluster

Figure 3.5 A simplified view of what happens when you use curl with kubectl port-forward

Using port forwarding like this is an effective way to test an individual pod. You’ll
learn about other similar methods throughout the book.

Organizing pods with labels

At this point, you have two pods running in your cluster. When deploying actual
applications, most users will end up running many more pods. As the number of
pods increases, the need for categorizing them into subsets becomes more and
more evident.

For example, with microservices architectures, the number of deployed microser-
vices can easily exceed 20 or more. Those components will probably be replicated



68

I Product
Catalog

pod

Shopping
Cart
pod

CHAPTER 3  Pods: running containers in Kubernetes

(multiple copies of the same component will be deployed) and multiple versions or
releases (stable, beta, canary, and so on) will run concurrently. This can lead to hun-
dreds of pods in the system. Without a mechanism for organizing them, you end up
with a big, incomprehensible mess, such as the one shown in figure 3.6. The figure
shows pods of multiple microservices, with several running multiple replicas, and others
running different releases of the same microservice.

Shopping
Cart
pod

Order
Service
pod

Order
Service
pod

Account
Service
pod

Product

Catalog Account

pod Service
pod

Product
Catalog
pod

Product
Catalog
pod

Product
Order

Service
pod

Ul pod

Catalog
pod

Product

Catalog
pod

Product g

Catalog
pod

Figure 3.6 Uncategorized pods in a microservices architecture

3.3.1

It’s evident you need a way of organizing them into smaller groups based on arbitrary
criteria, so every developer and system administrator dealing with your system can eas-
ily see which pod is which. And you’ll want to operate on every pod belonging to a cer-
tain group with a single action instead of having to perform the action for each pod
individually.

Organizing pods and all other Kubernetes objects is done through labels.

Introducing labels

Labels are a simple, yet incredibly powerful, Kubernetes feature for organizing not
only pods, but all other Kubernetes resources. A label is an arbitrary key-value pair you
attach to a resource, which is then utilized when selecting resources using label selectors
(resources are filtered based on whether they include the label specified in the selec-
tor). A resource can have more than one label, as long as the keys of those labels are
unique within that resource. You usually attach labels to resources when you create
them, but you can also add additional labels or even modify the values of existing
labels later without having to recreate the resource.



Organizing pods with labels 69

Let’s turn back to the microservices example from figure 3.6. By adding labels to
those pods, you get a much-better-organized system that everyone can easily make
sense of. Each pod is labeled with two labels:

= app, which specifies which app, component, or microservice the pod belongs to.
= rel, which shows whether the application running in the pod is a stable, beta,
or a canary release.

DEFINITION A canary release is when you deploy a new version of an applica-
tion next to the stable version, and only let a small fraction of users hit the
new version to see how it behaves before rolling it out to all users. This pre-
vents bad releases from being exposed to too many users.

By adding these two labels, you’ve essentially organized your pods into two dimen-
sions (horizontally by app and vertically by release), as shown in figure 3.7.

app=ui app=as app=pc app=sc app=0s
[ [ ! \

S : e : _ s

}% Account \&@PP- as | Product \@PP: P¢ Shopping app: sc Order
‘g,,’ Service <rel: stable | | Catalog Cart Service
o pod pod pod pod
gL \

o [ ;

3 Product @PP:PC__ || Order
2 Catalog rel: beta || Service
N pod pod
bl )

[

o Account <PP:35 | ( proguct <app:po Order
o Service Catalog Service
% pod pod pod
oL J

Figure 3.7 Organizing pods in a microservices architecture with pod labels

Every developer or ops person with access to your cluster can now easily see the sys-
tem’s structure and where each pod fits in by looking at the pod’s labels.
3.3.2 Specifying labels when creating a pod

Now, you’ll see labels in action by creating a new pod with two labels. Create a new file
called kubia-manual-with-labels.yaml with the contents of the following listing.

Listing 3.3 A pod with labels: kubia-manual-with-labels.yaml

apivVersion: vl
kind: Pod
metadata:
name: kubia-manual-v2



70

3.3.3

CHAPTER 3  Pods: running containers in Kubernetes

labels:
creation method: manual Two labels are
env: prod attached to the pod.
spec:
containers:

- image: luksa/kubia
name: kubia
ports:
- containerPort: 8080
protocol: TCP

You’ve included the labels creation method=manual and env=data.labels section.
You’ll create this pod now:

$ kubectl create -f kubia-manual-with-labels.yaml
pod "kubia-manual-v2" created

The kubectl get pods command doesn’t list any labels by default, but you can see
them by using the --show-1labels switch:

$ kubectl get po --show-labels

NAME READY STATUS RESTARTS AGE LABELS

kubia-manual 1/1 Running 0 16m <none>

kubia-manual-v2 1/1 Running 0 2m creat method=manual, env=prod
kubia-zxzij 1/1 Running 0 1d run=kubia

Instead of listing all labels, if you're only interested in certain labels, you can specify
them with the -L switch and have each displayed in its own column. List pods again
and show the columns for the two labels you’ve attached to your kubia-manual-v2 pod:

$ kubectl get po -L creation method, env

NAME READY STATUS RESTARTS AGE CREATION METHOD ENV
kubia-manual 1/1 Running 0 16m <none> <none>
kubia-manual-v2 1/1 Running 0 2m manual prod
kubia-zxzij 1/1 Running 0 1d <none> <none>

Modifying labels of existing pods

Labels can also be added to and modified on existing pods. Because the kubia-man-
ual pod was also created manually, let’s add the creation_method=manual label to it:

$ kubectl label po kubia-manual creation method=manual
pod "kubia-manual" labeled

Now, let’s also change the env=prod label to env=debug on the kubia-manual-v2 pod,
to see how existing labels can be changed.

NOTE You need to use the --overwrite option when changing existing labels.

$ kubectl label po kubia-manual-v2 env=debug --overwrite
pod "kubia-manual-v2" labeled



3.4

34.1

Listing subsets of pods through label selectors 71

List the pods again to see the updated labels:

$ kubectl get po -L creation method, env

NAME READY STATUS RESTARTS AGE CREATION_METHOD ENV

kubia-manual 1/1 Running 0 16m manual <none>
kubia-manual-v2 1/1 Running 0 2m manual debug
kubia-zxzij 1/1 Running 0 1d <none> <none>

As you can see, attaching labels to resources is trivial, and so is changing them on
existing resources. It may not be evident right now, but this is an incredibly powerful
feature, as you’ll see in the next chapter. But first, let’s see what you can do with these
labels, in addition to displaying them when listing pods.

Listing subsets of pods through label selectors

Attaching labels to resources so you can see the labels next to each resource when list-
ing them isn’t that interesting. But labels go hand in hand with label selectors. Label
selectors allow you to select a subset of pods tagged with certain labels and perform an
operation on those pods. A label selector is a criterion, which filters resources based
on whether they include a certain label with a certain value.

A label selector can select resources based on whether the resource

Contains (or doesn’t contain) a label with a certain key
Contains a label with a certain key and value
Contains a label with a certain key, but with a value not equal to the one you

specify

Listing pods using a label selector

Let’s use label selectors on the pods you've created so far. To see all pods you created
manually (you labeled them with creation method=manual), do the following:

$ kubectl get po -1 creation method=manual

NAME READY STATUS RESTARTS AGE
kubia-manual 1/1 Running 0 51m
kubia-manual-v2 1/1 Running 0 37m

To list all pods that include the env label, whatever its value is:

$ kubectl get po -1 env
NAME READY STATUS RESTARTS AGE
kubia-manual-v2 1/1 Running 0 37m

And those that don’t have the env label:

$ kubectl get po -1 'lenv'

NAME READY STATUS RESTARTS AGE
kubia-manual 1/1 Running 0 51m
kubia-zxzij 1/1 Running 0 10d



72

CHAPTER 3  Pods: running containers in Kubernetes

NOTE Make sure to use single quotes around !env, so the bash shell doesn’t
evaluate the exclamation mark.

Similarly, you could also match pods with the following label selectors:

creation_method!=manual to select pods with the creation method label with
any value other than manual

env in (prod,devel) to select pods with the env label set to either prod or
devel

env notin (prod,devel) to select pods with the env label set to any value other
than prod or devel

Turning back to the pods in the microservices-oriented architecture example, you
could select all pods that are part of the product catalog microservice by using the
app=pc label selector (shown in the following figure).

app=ui app=as app=pc app=sc app=0s

[ [ [ [ [ \
0]
— 4
ﬁ Account \&PP- as | Product \@PP: PC _I Shopping app: sc Order app: 0s |
‘;) Service (rel; stable Catalog (rel: stabll Cart rel: stab Service (rel: stable
- pod pod pod pod
oL . .
o
] Product Order
Q Catalog <rel: beta I Service
o pod pod
tL —
[
s Account \2PP- 88 | Product <@PP- PC Order
g Service Catalog I Service
) pod pod pod
o
G NG

Figure 3.8 Selecting the product catalog microservice pods using the “app=pc” label selector

3.4.2

Using multiple conditions in a label selector

A selector can also include multiple comma-separated criteria. Resources need to
match all of them to match the selector. If, for example, you want to select only pods
running the beta release of the product catalog microservice, you'd use the following
selector: app=pc, rel=beta (visualized in figure 3.9).

Label selectors aren’t useful only for listing pods, but also for performing actions
on a subset of all pods. For example, later in the chapter, you’ll see how to use label
selectors to delete multiple pods at once. But label selectors aren’t used only by
kubectl. They're also used internally, as you’ll see next.



=stable

rel

canary rel=beta

rel

Using labels and selectors to constrain pod scheduling 73

app=as app=pc app=sc app=0s
[ [ [ \
4 4
Account <@PP:as | [ progyet <app:pc Shopping\&PP: ¢ Order app:os |
Service Catalog Cart Service
pod pod pod pod
" &
Order
Service
pod
p
Account \2PP: as | Product \@PP: PC Order
Service Catalog Service
pod pod pod

\\

Figure 3.9 Selecting pods with multiple label selectors

3.5

Using labels and selectors to constrain pod scheduling

All the pods you’ve created so far have been scheduled pretty much randomly across
your worker nodes. As I've mentioned in the previous chapter, this is the proper way
of working in a Kubernetes cluster. Because Kubernetes exposes all the nodes in the
cluster as a single, large deployment platform, it shouldn’t matter to you what node a
pod is scheduled to. Because each pod gets the exact amount of computational
resources it requests (CPU, memory, and so on) and its accessibility from other pods
isn’t at all affected by the node the pod is scheduled to, usually there shouldn’t be any
need for you to tell Kubernetes exactly where to schedule your pods.

Certain cases exist, however, where you’ll want to have at least a little say in where
a pod should be scheduled. A good example is when your hardware infrastructure
isn’t homogenous. If part of your worker nodes have spinning hard drives, whereas
others have SSDs, you may want to schedule certain pods to one group of nodes and
the rest to the other. Another example is when you need to schedule pods perform-
ing intensive GPU-based computation only to nodes that provide the required GPU
acceleration.

You never want to say specifically what node a pod should be scheduled to, because
that would couple the application to the infrastructure, whereas the whole idea of
Kubernetes is hiding the actual infrastructure from the apps that run on it. But if you
want to have a say in where a pod should be scheduled, instead of specifying an exact
node, you should describe the node requirements and then let Kubernetes select a
node that matches those requirements. This can be done through node labels and
node label selectors.



74

3.5.1

3.5.2

CHAPTER 3  Pods: running containers in Kubernetes

Using labels for categorizing worker nodes

As you learned earlier, pods aren’t the only Kubernetes resource type that you can
attach a label to. Labels can be attached to any Kubernetes object, including nodes.
Usually, when the ops team adds a new node to the cluster, they’ll categorize the node
by attaching labels specifying the type of hardware the node provides or anything else
that may come in handy when scheduling pods.

Let’s imagine one of the nodes in your cluster contains a GPU meant to be used
for general-purpose GPU computing. You want to add a label to the node showing this
feature. You’'re going to add the label gpu=true to one of your nodes (pick one out of
the list returned by kubectl get nodes):

$ kubectl label node gke-kubia-85f6-node-0rrx gpu=true
node "gke-kubia-85f6-node-0rrx" labeled

Now you can use a label selector when listing the nodes, like you did before with pods.
List only nodes that include the label gpu=true:

$ kubectl get nodes -1 gpu=true
NAME STATUS AGE
gke-kubia-85f6-node-0rrx Ready 1d

As expected, only one node has this label. You can also try listing all the nodes and tell
kubectl to display an additional column showing the values of each node’s gpu label
(kubectl get nodes -L gpu).

Scheduling pods to specific nodes

Now imagine you want to deploy a new pod that needs a GPU to perform its work.
To ask the scheduler to only choose among the nodes that provide a GPU, you’ll
add a node selector to the pod’s YAML. Create a file called kubia-gpu.yaml with the
following listing’s contents and then use kubectl create -f kubia-gpu.yaml to cre-
ate the pod.

Listing 3.4 Using a label selector to schedule a pod to a specific node: kubia-gpu.yaml

apiVersion: vl

kind: Pod
metadata:
name: kubia-gpu nodeSelector tells Kubernetes
spec: to deploy this pod only to
nodeSelector: nodes containing the
gpu: "true" gpu=true label.
containers:

- image: luksa/kubia
name: kubia



3.5.3

3.6

3.6.1

Annotating pods 75

You’ve added a nodeSelector field under the spec section. When you create the pod,
the scheduler will only choose among the nodes that contain the gpu=true label
(which is only a single node in your case).

Scheduling to one specific node

Similarly, you could also schedule a pod to an exact node, because each node also has
a unique label with the key kubernetes.io/hostname and value set to the actual host-
name of the node. But setting the nodeSelector to a specific node by the hostname
label may lead to the pod being unschedulable if the node is offline. You shouldn’t
think in terms of individual nodes. Always think about logical groups of nodes that sat-
isfy certain criteria specified through label selectors.

This was a quick demonstration of how labels and label selectors work and how
they can be used to influence the operation of Kubernetes. The importance and use-
fulness of label selectors will become even more evident when we talk about Replication-
Controllers and Services in the next two chapters.

NOTE Additional ways of influencing which node a pod is scheduled to are
covered in chapter 16.

Annotating pods

In addition to labels, pods and other objects can also contain annotations. Annotations
are also key-value pairs, so in essence, they’re similar to labels, but they aren’t meant to
hold identifying information. They can’t be used to group objects the way labels can.
While objects can be selected through label selectors, there’s no such thing as an
annotation selector.

On the other hand, annotations can hold much larger pieces of information and
are primarily meant to be used by tools. Certain annotations are automatically added
to objects by Kubernetes, but others are added by users manually.

Annotations are also commonly used when introducing new features to Kuberne-
tes. Usually, alpha and beta versions of new features don’t introduce any new fields to
API objects. Annotations are used instead of fields, and then once the required API
changes have become clear and been agreed upon by the Kubernetes developers, new
fields are introduced and the related annotations deprecated.

A great use of annotations is adding descriptions for each pod or other API object,
so that everyone using the cluster can quickly look up information about each individ-
ual object. For example, an annotation used to specify the name of the person who
created the object can make collaboration between everyone working on the cluster
much easier.

Looking up an object’s annotations

Let’s see an example of an annotation that Kubernetes added automatically to the
pod you created in the previous chapter. To see the annotations, you’ll need to



76

3.6.2

3.7

CHAPTER 3  Pods: running containers in Kubernetes

request the full YAML of the pod or use the kubectl describe command. You'll use the
first option in the following listing.

Listing 3.5 A pod’s annotations

$ kubectl get po kubia-zxzij -o yaml
apiversion: vl

kind: pod
metadata:
annotations:
kubernetes.io/created-by: |
{"kind":"SerializedReference", "apiVersion":"v1l",
"reference":{"kind":"ReplicationController", "namespace":"default",

Without going into too many details, as you can see, the kubernetes.io/created-by
annotation holds JSON data about the object that created the pod. That’s not some-
thing you’d want to put into a label. Labels should be short, whereas annotations can
contain relatively large blobs of data (up to 256 KB in total).

NOTE The kubernetes.io/created-by annotations was deprecated in ver-
sion 1.8 and will be removed in 1.9, so you will no longer see it in the YAML.

Adding and modifying annotations

Annotations can obviously be added to pods at creation time, the same way labels can.

They can also be added to or modified on existing pods later. The simplest way to add

an annotation to an existing object is through the kubectl annotate command.
You'll try adding an annotation to your kubia-manual pod now:

$ kubectl annotate pod kubia-manual mycompany.com/someannotation="foo bar"
pod "kubia-manual" annotated

You added the annotation mycompany.com/someannotation with the value foo bar.
It’s a good idea to use this format for annotation keys to prevent key collisions. When
different tools or libraries add annotations to objects, they may accidentally override
each other’s annotations if they don’t use unique prefixes like you did here.

You can use kubectl describe to see the annotation you added:

$ kubectl describe pod kubia-manual

Annotations: mycompany . com/someannotation=foo bar

Using namespaces to group resources

Let’s turn back to labels for a moment. We’ve seen how they organize pods and other
objects into groups. Because each object can have multiple labels, those groups of
objects can overlap. Plus, when working with the cluster (through kubect1l for example),
if you don’t explicitly specify a label selector, you’ll always see all objects.



3.7.1

3.7.2

Using namespaces to group resources 77

But what about times when you want to split objects into separate, non-overlapping
groups? You may want to only operate inside one group at a time. For this and other
reasons, Kubernetes also groups objects into namespaces. These aren’t the Linux
namespaces we talked about in chapter 2, which are used to isolate processes from
each other. Kubernetes namespaces provide a scope for objects names. Instead of hav-
ing all your resources in one single namespace, you can split them into multiple name-
spaces, which also allows you to use the same resource names multiple times (across
different namespaces).

Understanding the need for namespaces

Using multiple namespaces allows you to split complex systems with numerous com-
ponents into smaller distinct groups. They can also be used for separating resources
in a multi-tenant environment, splitting up resources into production, development,
and QA environments, or in any other way you may need. Resource names only need
to be unique within a namespace. Two different namespaces can contain resources of
the same name. But, while most types of resources are namespaced, a few aren’t. One
of them is the Node resource, which is global and not tied to a single namespace.
You’ll learn about other cluster-level resources in later chapters.
Let’s see how to use namespaces now.

Discovering other namespaces and their pods
First, let’s list all namespaces in your cluster:

$ kubectl get ns

NAME LABELS STATUS AGE
default <nones> Active 1h
kube-public <nones Active 1h
kube-system <none> Active 1h

Up to this point, you’ve operated only in the default namespace. When listing resources
with the kubectl get command, you’ve never specified the namespace explicitly, so
kubectl always defaulted to the default namespace, showing you only the objects in
that namespace. But as you can see from the list, the kube-public and the kube-system
namespaces also exist. Let’s look at the pods that belong to the kube-system name-
space, by telling kubect1 to list pods in that namespace only:

$ kubectl get po --namespace kube-system

NAME READY STATUS RESTARTS AGE
fluentd-cloud-kubia-e8fe-node-txje 1/1 Running 0 1h
heapster-vll-fzlge 1/1 Running 0 1h
kube-dns-v9-p8a4t 0/4 Pending 0 1h
kube-ui-v4-kdlai 1/1 Running 0 1h
17-1b-controller-v0.5.2-bued6 2/2 Running 92 1h

TIP You can also use -n instead of --namespace.



78

3.7.3

CHAPTER 3  Pods: running containers in Kubernetes

You’ll learn about these pods later in the book (don’t worry if the pods shown here
don’t match the ones on your system exactly). It’s clear from the name of the name-
space that these are resources related to the Kubernetes system itself. By having
them in this separate namespace, it keeps everything nicely organized. If they were
all in the default namespace, mixed in with the resources you create yourself, you’d
have a hard time seeing what belongs where, and you might inadvertently delete sys-
tem resources.

Namespaces enable you to separate resources that don’t belong together into non-
overlapping groups. If several users or groups of users are using the same Kubernetes
cluster, and they each manage their own distinct set of resources, they should each use
their own namespace. This way, they don’t need to take any special care not to inad-
vertently modify or delete the other users’ resources and don’t need to concern them-
selves with name conflicts, because namespaces provide a scope for resource names,
as has already been mentioned.

Besides isolating resources, namespaces are also used for allowing only certain users
access to particular resources and even for limiting the amount of computational
resources available to individual users. You’ll learn about this in chapters 12 through 14.

Creating a namespace

A namespace is a Kubernetes resource like any other, so you can create it by posting a
YAML file to the Kubernetes API server. Let’s see how to do this now.

CREATING A NAMESPACE FROM A YAML FILE
First, create a custom-namespace.yaml file with the following listing’s contents (you’ll
find the file in the book’s code archive).

Listing 3.6 A YAML definition of a namespace: custom-namespace.yaml

H ’
apiVersion: vi This says you're
kind: Namespace defining a namespace.
metadata:
name: custom-namespace This is the name
of the namespace.

Now, use kubectl to post the file to the Kubernetes API server:

$ kubectl create -f custom-namespace.yaml
namespace "custom-namespace" created

CREATING A NAMESPACE WITH KUBECTL CREATE NAMESPACE

Although writing a file like the previous one isn’t a big deal, it’s still a hassle. Luckily,
you can also create namespaces with the dedicated kubectl create namespace com-
mand, which is quicker than writing a YAML file. By having you create a YAML mani-
fest for the namespace, I wanted to reinforce the idea that everything in Kubernetes



3.74

3.7.5

Using namespaces to group resources 79

has a corresponding API object that you can create, read, update, and delete by post-
ing a YAML manifest to the API server.
You could have created the namespace like this:

$ kubectl create namespace custom-namespace
namespace "custom-namespace" created

NOTE Although most objects’ names must conform to the naming conven-
tions specified in RFC 1035 (Domain names), which means they may contain
only letters, digits, dashes, and dots, namespaces (and a few others) aren’t
allowed to contain dots.

Managing objects in other namespaces

To create resources in the namespace you’ve created, either add a namespace: custom-
namespace entry to the metadata section, or specify the namespace when creating the
resource with the kubectl create command:

$ kubectl create -f kubia-manual.yaml -n custom-namespace
pod "kubia-manual" created

You now have two pods with the same name (kubia-manual). One is in the default
namespace, and the other is in your custom-namespace.

When listing, describing, modifying, or deleting objects in other namespaces, you
need to pass the --namespace (or -n) flag to kubectl. If you don’t specity the name-
space, kubectl performs the action in the default namespace configured in the cur-
rent kubectl context. The current context’s namespace and the current context itself
can be changed through kubectl config commands. To learn more about managing
kubectl contexts, refer to appendix A.

TIP  To quickly switch to a different namespace, you can set up the following
alias: alias kcd="'kubectl config set-context $ (kubectl config current-
context) --namespace '. You can then switch between namespaces using kcd
some-namespace.

Understanding the isolation provided by namespaces

To wrap up this section about namespaces, let me explain what namespaces don’t pro-
vide—at least not out of the box. Although namespaces allow you to isolate objects
into distinct groups, which allows you to operate only on those belonging to the speci-
fied namespace, they don’t provide any kind of isolation of running objects.

For example, you may think that when different users deploy pods across different
namespaces, those pods are isolated from each other and can’t communicate, but that’s
not necessarily the case. Whether namespaces provide network isolation depends on
which networking solution is deployed with Kubernetes. When the solution doesn’t
provide inter-namespace network isolation, if a pod in namespace foo knows the IP



80

3.8

381

3.8.2

3.83

CHAPTER 3  Pods: running containers in Kubernetes

address of a pod in namespace bar, there is nothing preventing it from sending traffic,
such as HTTP requests, to the other pod.

Stopping and removing pods

You've created a number of pods, which should all still be running. You have four
pods running in the default namespace and one pod in custom-namespace. You're
going to stop all of them now, because you don’t need them anymore.

Deleting a pod by name
First, delete the kubia-gpu pod by name:

$ kubectl delete po kubia-gpu
pod "kubia-gpu" deleted

By deleting a pod, you're instructing Kubernetes to terminate all the containers that are
part of that pod. Kubernetes sends a SIGTERM signal to the process and waits a certain
number of seconds (30 by default) for it to shut down gracefully. If it doesn’t shut down
in time, the process is then killed through SIGKILL. To make sure your processes are
always shut down gracefully, they need to handle the SIGTERM signal properly.

TIP  You can also delete more than one pod by specifying multiple, space-sep-
arated names (for example, kubectl delete po podl pod2).

Deleting pods using label selectors

Instead of specifying each pod to delete by name, you’ll now use what you’ve learned
about label selectors to stop both the kubia-manual and the kubia-manual-v2 pod.
Both pods include the creation method=manual label, so you can delete them by
using a label selector:

$ kubectl delete po -1 creation method=manual
pod "kubia-manual" deleted
pod "kubia-manual-v2" deleted

In the earlier microservices example, where you had tens (or possibly hundreds) of
pods, you could, for instance, delete all canary pods at once by specifying the
rel=canary label selector (visualized in figure 3.10):

$ kubectl delete po -1 rel=canary

Deleting pods by deleting the whole namespace

Okay, back to your real pods. What about the pod in the custom-namespace? You no
longer need either the pods in that namespace, or the namespace itself. You can



Stopping and removing pods 81

app=as app=pc app=sc app=0s

=stable

rel

=beta

rel

canary

rel

I [ I I \

; 4 ; ; C
Account \&PP- as | Product \@PP: PC Shopping\&PP: SC n Order

Service (rel: stable | Catalog <(rel: stable Cart rel: stable Service (rel: stable |
pod J pod pod pod J
I .

app: os |

Product

Catalog
pod '

Order
Service

Figure 3.10 Selecting and deleting all canary pods through the rel=canary label selector

3.84

delete the whole namespace (the pods will be deleted along with the namespace auto-
matically), using the following command:

$ kubectl delete ns custom-namespace
namespace "custom-namespace'" deleted

Deleting all pods in a hamespace, while keeping the namespace

You’ve now cleaned up almost everything. But what about the pod you created with
the kubectl run command in chapter 2? That one is still running:

$ kubectl get pods
NAME READY
kubia-zxzij 1/1

STATUS RESTARTS AGE
Running 0 1d

This time, instead of deleting the specific pod, tell Kubernetes to delete all pods in the
current namespace by using the --all option:

$ kubectl delete po --all
pod "kubia-zxzij" deleted

Now, double check that no pods were left running:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
kubia-09as0 1/1 Running 0 1d
kubia-zxzij 1/1 Terminating 0 1d



82

3.8.5

3.9

CHAPTER 3  Pods: running containers in Kubernetes

Wait, what!?! The kubia-zxzij pod is terminating, but a new pod called kubia-09as0,
which wasn’t there before, has appeared. No matter how many times you delete all
pods, a new pod called kubia-something will emerge.

You may remember you created your first pod with the kubectl run command. In
chapter 2, I mentioned that this doesn’t create a pod directly, but instead creates a
ReplicationController, which then creates the pod. As soon as you delete a pod cre-
ated by the ReplicationController, it immediately creates a new one. To delete the
pod, you also need to delete the ReplicationController.

Deleting (almost) all resources in a namespace

You can delete the ReplicationController and the pods, as well as all the Services
you’ve created, by deleting all resources in the current namespace with a single
command:

$ kubectl delete all --all

pod "kubia-09as0" deleted
replicationcontroller "kubia" deleted
service "kubernetes" deleted

service "kubia-http" deleted

The first all in the command specifies that you’re deleting resources of all types, and
the --all option specifies that you’re deleting all resource instances instead of speci-
fying them by name (you already used this option when you ran the previous delete
command).

NOTE Deleting everything with the all keyword doesn’t delete absolutely
everything. Certain resources (like Secrets, which we’ll introduce in chapter 7)
are preserved and need to be deleted explicitly.

As it deletes resources, kubect1 will print the name of every resource it deletes. In the
list, you should see the kubia ReplicationController and the kubia-http Service you
created in chapter 2.

NOTE The kubectl delete all --all command also deletes the kubernetes
Service, but it should be recreated automatically in a few moments.

Summary

After reading this chapter, you should now have a decent knowledge of the central
building block in Kubernetes. Every other concept you’ll learn about in the next few
chapters is directly related to pods.

In this chapter, you’ve learned

How to decide whether certain containers should be grouped together in a pod
or not.



Summary 83

Pods can run multiple processes and are similar to physical hosts in the non-
container world.

YAML or JSON descriptors can be written and used to create pods and then
examined to see the specification of a pod and its current state.

Labels and label selectors should be used to organize pods and easily perform
operations on multiple pods at once.

You can use node labels and selectors to schedule pods only to nodes that have
certain features.

Annotations allow attaching larger blobs of data to pods either by people or
tools and libraries.

Namespaces can be used to allow different teams to use the same cluster as
though they were using separate Kubernetes clusters.

How to use the kubectl explain command to quickly look up the information
on any Kubernetes resource.

In the next chapter, you’ll learn about ReplicationControllers and other resources
that manage pods.



Replication and other
controllers: deploying
managed pods

This chapter covers

Keeping pods healthy

Running multiple instances of the same pod
Automatically rescheduling pods after a node fails
Scaling pods horizontally

Running system-level pods on each cluster node
Running batch jobs

Scheduling jobs to run periodically or once in
the future

As you’ve learned so far, pods represent the basic deployable unit in Kubernetes.
You know how to create, supervise, and manage them manually. But in real-world
use cases, you want your deployments to stay up and running automatically and
remain healthy without any manual intervention. To do this, you almost never cre-
ate pods directly. Instead, you create other types of resources, such as Replication-
Controllers or Deployments, which then create and manage the actual pods.
When you create unmanaged pods (such as the ones you created in the previ-
ous chapter), a cluster node is selected to run the pod and then its containers are
run on that node. In this chapter, you'll learn that Kubernetes then monitors

84



4.1

4.1.1

Keeping pods healthy 85

those containers and automatically restarts them if they fail. But if the whole node
fails, the pods on the node are lost and will not be replaced with new ones, unless
those pods are managed by the previously mentioned ReplicationControllers or simi-
lar. In this chapter, you’ll learn how Kubernetes checks if a container is still alive and
restarts it if it isn’t. You’ll also learn how to run managed pods—both those that run
indefinitely and those that perform a single task and then stop.

Keeping pods healthy

One of the main benefits of using Kubernetes is the ability to give it a list of contain-
ers and let it keep those containers running somewhere in the cluster. You do this by
creating a Pod resource and letting Kubernetes pick a worker node for it and run
the pod’s containers on that node. But what if one of those containers dies? What if
all containers of a pod die?

As soon as a pod is scheduled to a node, the Kubelet on that node will run its con-
tainers and, from then on, keep them running as long as the pod exists. If the con-
tainer’s main process crashes, the Kubelet will restart the container. If your
application has a bug that causes it to crash every once in a while, Kubernetes will
restart it automatically, so even without doing anything special in the app itself, run-
ning the app in Kubernetes automatically gives it the ability to heal itself.

But sometimes apps stop working without their process crashing. For example, a
Java app with a memory leak will start throwing OutOfMemoryErrors, but the JVM
process will keep running. It would be great to have a way for an app to signal to
Kubernetes that it’s no longer functioning properly and have Kubernetes restart it.

We’ve said that a container that crashes is restarted automatically, so maybe you’re
thinking you could catch these types of errors in the app and exit the process when
they occur. You can certainly do that, but it still doesn’t solve all your problems.

For example, what about those situations when your app stops responding because
it falls into an infinite loop or a deadlock? To make sure applications are restarted in
such cases, you must check an application’s health from the outside and not depend
on the app doing it internally.

Introducing liveness probes

Kubernetes can check if a container is still alive through liveness probes. You can specity
a liveness probe for each container in the pod’s specification. Kubernetes will periodi-
cally execute the probe and restart the container if the probe fails.

NOTE Kubernetes also supports readiness probes, which we’ll learn about in the
next chapter. Be sure not to confuse the two. They're used for two different
things.

Kubernetes can probe a container using one of the three mechanisms:

An HTTP GET probe performs an HTTP GET request on the container’s IP
address, a port and path you specify. If the probe receives a response, and the



86

4.1.2

CHAPTER 4 Replication and other controllers: deploying managed pods

response code doesn’t represent an error (in other words, if the HTTP response
code is 2xx or 3xx), the probe is considered successful. If the server returns an
error response code or if it doesn’t respond at all, the probe is considered a fail-
ure and the container will be restarted as a result.

= A TCP Socket probe tries to open a TCP connection to the specified port of the
container. If the connection is established successfully, the probe is successful.
Otherwise, the container is restarted.

= An Exec probe executes an arbitrary command inside the container and checks
the command’s exit status code. If the status code is 0, the probe is successful.
All other codes are considered failures.

Creating an HTTP-based liveness probe

Let’s see how to add a liveness probe to your Node.js app. Because it’s a web app, it
makes sense to add a liveness probe that will check whether its web server is serving
requests. But because this particular Node.js app is too simple to ever fail, you’ll need
to make the app fail artificially.

To properly demo liveness probes, you’ll modify the app slightly and make it
return a 500 Internal Server Error HTTP status code for each request after the fifth
one—your app will handle the first five client requests properly and then return an
error on every subsequent request. Thanks to the liveness probe, it should be restarted
when that happens, allowing it to properly handle client requests again.

You can find the code of the new app in the book’s code archive (in the folder
Chapter04/kubia-unhealthy). I've pushed the container image to Docker Hub, so you
don’t need to build it yourself.

You’ll create a new pod that includes an HTTP GET liveness probe. The following
listing shows the YAML for the pod.

Listing 4.1 Adding a liveness probe to a pod: kubia-liveness-probe.yaml

apivVersion: vl

kind: pod
metadata:
name: kubia-liveness This is the image
spec: containing the
containers: (somewhat)
- image: luksa/kubia-unhealthy brOke“apP
name: kubia
livenessProbe: A liveness probe that will
httpGet: perform an HTTP GET
path: /
port: 8080 The path to
request in the
The network port HTTP request

the probe should
connect to



4.1.3

Keeping pods healthy 87

The pod descriptor defines an httpGet liveness probe, which tells Kubernetes to peri-
odically perform HTTP GET requests on path / on port 8080 to determine if the con-
tainer is still healthy. These requests start as soon as the container is run.

After five such requests (or actual client requests), your app starts returning
HTTP status code 500, which Kubernetes will treat as a probe failure, and will thus
restart the container.

Seeing a liveness probe in action

To see what the liveness probe does, try creating the pod now. After about a minute and
a half, the container will be restarted. You can see that by running kubectl get:

$ kubectl get po kubia-liveness
NAME READY STATUS RESTARTS AGE
kubia-liveness 1/1 Running 1 2m

The RESTARTS column shows that the pod’s container has been restarted once (if you
wait another minute and a half, it gets restarted again, and then the cycle continues
indefinitely).

Obtaining the application log of a crashed container

In the previous chapter, you learned how to print the application’s log with kubectl
logs. If your container is restarted, the kubectl 1ogs command will show the log of
the current container.

When you want to figure out why the previous container terminated, you’ll want to
see those logs instead of the current container’s logs. This can be done by using
the --previous option:

$ kubectl logs mypod --previous

You can see why the container had to be restarted by looking at what kubect1 describe
prints out, as shown in the following listing.

Listing 4.2 A pod’s description after its container is restarted

$ kubectl describe po kubia-liveness

Name : kubia-liveness
Containers:
kubia:

Container ID: docker://480986f8
Image: luksa/kubia-unhealthy
Image ID: docker://sha256:2b208508
Port:
State: Running The container is

Started: Sun, 14 May 2017 11:41:40 +0200 cun@nﬂyrunMng



88 CHAPTER 4 Replication and other controllers: deploying managed pods

Last State: Terminated .
Reason: Error Theprewous .
Exit Code: 137 cqntamertermlnated
Started: Mon, 01 Jan 0001 00:00:00 +0000 ::2:::;???;3:137
Finished: Sun, 14 May 2017 11:41:38 +0200 :
Ready: True
Restart Count: 1 The container
Liveness: http-get http://:8080/ delay=0s timeout=1ls has been

period=10s #success=1 #failure=3 restarted once.

Events:
. Killing container with id docker://95246981:pod "kubia-liveness ..."
container "kubia" is unhealthy, it will be killed and re-created.

You can see that the container is currently running, but it previously terminated
because of an error. The exit code was 137, which has a special meaning—it denotes
that the process was terminated by an external signal. The number 137 is a sum of two
numbers: 128+x, where x is the signal number sent to the process that caused it to ter-
minate. In the example, x equals 9, which is the number of the SIGKILL signal, mean-
ing the process was killed forcibly.

The events listed at the bottom show why the container was killed—Kubernetes
detected the container was unhealthy, so it killed and re-created it.

NOTE When a container is killed, a completely new container is created—it’s
not the same container being restarted again.

4.1.4 Configuring additional properties of the liveness probe

You may have noticed that kubectl describe also displays additional information
about the liveness probe:

Liveness: http-get http://:8080/ delay=0s timeout=1s period=10s #success=1
#failure=3

Beside the liveness probe options you specified explicitly, you can also see additional
properties, such as delay, timeout, period, and so on. The delay=0s part shows that
the probing begins immediately after the container is started. The timeout is set to
only 1 second, so the container must return a response in 1 second or the probe is
counted as failed. The container is probed every 10 seconds (period=10s) and the
container is restarted after the probe fails three consecutive times (#failure=3).

These additional parameters can be customized when defining the probe. For
example, to set the initial delay, add the initialDelaySeconds property to the live-
ness probe as shown in the following listing.

Listing 4.3 A liveness probe with an initial delay: kubia-liveness-probe-initial-delay.yaml

livenessProbe:
httpGet:
path: /



4.1.5

Keeping pods healthy 89

port: 8080

initialDelaySeconds: 15 Kubernetes will wait 15 seconds

before executing the first probe.

If you don’t set the initial delay, the prober will start probing the container as soon as
it starts, which usually leads to the probe failing, because the app isn’t ready to start
receiving requests. If the number of failures exceeds the failure threshold, the con-
tainer is restarted before it’s even able to start responding to requests properly.

TIP Always remember to set an initial delay to account for your app’s startup
time.

I’'ve seen this on many occasions and users were confused why their container was
being restarted. But if they’d used kubectl describe, they’d have seen that the con-
tainer terminated with exit code 137 or 143, telling them that the pod was terminated
externally. Additionally, the listing of the pod’s events would show that the container
was killed because of a failed liveness probe. If you see this happening at pod startup,
it’s because you failed to set initialDelaySeconds appropriately.

NOTE Exit code 137 signals that the process was killed by an external signal
(exit code is 128 + 9 (SIGKILL). Likewise, exit code 143 corresponds to 128 +
15 (SIGTERM).

Creating effective liveness probes

For pods running in production, you should always define a liveness probe. Without
one, Kubernetes has no way of knowing whether your app is still alive or not. As long
as the process is still running, Kubernetes will consider the container to be healthy.

WHAT A LIVENESS PROBE SHOULD CHECK

Your simplistic liveness probe simply checks if the server is responding. While this may
seem overly simple, even a liveness probe like this does wonders, because it causes the
container to be restarted if the web server running within the container stops
responding to HTTP requests. Compared to having no liveness probe, this is a major
improvement, and may be sufficient in most cases.

But for a better liveness check, you’d configure the probe to perform requests on a
specific URL path (/health, for example) and have the app perform an internal sta-
tus check of all the vital components running inside the app to ensure none of them
has died or is unresponsive.

TIP Make sure the /health HTTP endpoint doesn’t require authentication;
otherwise the probe will always fail, causing your container to be restarted
indefinitely.

Be sure to check only the internals of the app and nothing influenced by an external
factor. For example, a frontend web server’s liveness probe shouldn’t return a failure
when the server can’t connect to the backend database. If the underlying cause is in
the database itself, restarting the web server container will not fix the problem.



90

4.2

CHAPTER 4 Replication and other controllers: deploying managed pods

Because the liveness probe will fail again, you’ll end up with the container restarting
repeatedly until the database becomes accessible again.

KEEPING PROBES LIGHT

Liveness probes shouldn’t use too many computational resources and shouldn’t take
too long to complete. By default, the probes are executed relatively often and are
only allowed one second to complete. Having a probe that does heavy lifting can slow
down your container considerably. Later in the book, you’ll also learn about how to
limit CPU time available to a container. The probe’s CPU time is counted in the con-
tainer’s CPU time quota, so having a heavyweight liveness probe will reduce the CPU
time available to the main application processes.

TIP If you’re running a Java app in your container, be sure to use an HTTP
GET liveness probe instead of an Exec probe, where you spin up a whole new
JVM to get the liveness information. The same goes for any JVM-based or sim-
ilar applications, whose start-up procedure requires considerable computa-
tional resources.

DON’T BOTHER IMPLEMENTING RETRY LOOPS IN YOUR PROBES

You’ve already seen that the failure threshold for the probe is configurable and usu-
ally the probe must fail multiple times before the container is killed. But even if you
set the failure threshold to 1, Kubernetes will retry the probe several times before con-
sidering it a single failed attempt. Therefore, implementing your own retry loop into
the probe is wasted effort.

LIVENESS PROBE WRAP-UP

You now understand that Kubernetes keeps your containers running by restarting
them if they crash or if their liveness probes fail. This job is performed by the Kubelet
on the node hosting the pod—the Kubernetes Control Plane components running on
the master(s) have no part in this process.

But if the node itself crashes, it’s the Control Plane that must create replacements for
all the pods that went down with the node. It doesn’t do that for pods that you create
directly. Those pods aren’t managed by anything except by the Kubelet, but because the
Kubelet runs on the node itself, it can’t do anything if the node fails.

To make sure your app is restarted on another node, you need to have the pod
managed by a ReplicationController or similar mechanism, which we’ll discuss in the
rest of this chapter.

Introducing ReplicationControllers

A ReplicationController is a Kubernetes resource that ensures its pods are always
kept running. If the pod disappears for any reason, such as in the event of a node
disappearing from the cluster or because the pod was evicted from the node, the
ReplicationController notices the missing pod and creates a replacement pod.

Figure 4.1 shows what happens when a node goes down and takes two pods with it.
Pod A was created directly and is therefore an unmanaged pod, while pod B is managed



Introducing ReplicationControllers 91

Pod A goes down with Node | and is
not recreated, because there is no
ReplicationController overseeing it.

Node 1 Node 2 Node 1 Node 2

Various Various
Pod A other pods other pods
Node 1 fails
Pod B Pod B2

Creates and

manages ﬂ .......... ) F

ReplicationController ReplicationController

RC notices pod B is
missing and creates
a new pod instance.

Figure 4.1 When a node fails, only pods backed by a ReplicationController are recreated.

by a ReplicationController. After the node fails, the ReplicationController creates a
new pod (pod B2) to replace the missing pod B, whereas pod A is lost completely—
nothing will ever recreate it.

The ReplicationController in the figure manages only a single pod, but Replication-
Controllers, in general, are meant to create and manage multiple copies (replicas) of a
pod. That’s where ReplicationControllers got their name from.

4.2.1 The operation of a ReplicationController

A ReplicationController constantly monitors the list of running pods and makes sure
the actual number of pods of a “type” always matches the desired number. If too few
such pods are running, it creates new replicas from a pod template. If too many such
pods are running, it removes the excess replicas.

You might be wondering how there can be more than the desired number of repli-
cas. This can happen for a few reasons:

Someone creates a pod of the same type manually.
Someone changes an existing pod’s “type.”
Someone decreases the desired number of pods, and so on.



CHAPTER 4 Replication and other controllers: deploying managed pods

I've used the term pod “type” a few times. But no such thing exists. Replication-
Controllers don’t operate on pod types, but on sets of pods that match a certain label
selector (you learned about them in the previous chapter).

INTRODUCING THE CONTROLLER’S RECONCILIATION LOOP

A ReplicationController’s job is to make sure that an exact number of pods always
matches its label selector. If it doesn’t, the ReplicationController takes the appropriate
action to reconcile the actual with the desired number. The operation of a Replication-
Controller is shown in figure 4.2.

Find pods
matching the
label selector

Compare
matched vs.
desired pod
count

Create additional Too few
pod(s) from
current template

Too many Delete the

excess pod(s)

Just enough

Figure 4.2 A ReplicationController’s reconciliation loop

UNDERSTANDING THE THREE PARTS OF A REPLICATIONCONTROLLER

A ReplicationController has three essential parts (also shown in figure 4.3):
A label selector, which determines what pods are in the ReplicationController’s scope
A replica count, which specifies the desired number of pods that should be running
A pod template, which is used when creating new pod replicas

ReplicationController: kubia

Pod selector: Pod template
app=kubia
pog<_aPP: kubia |
Replicas: 3 Figure 4.3 The three key parts of a
ReplicationController (pod selector,

replica count, and pod template)




4.2.2

Introducing ReplicationControllers 93

A ReplicationController’s replica count, the label selector, and even the pod tem-
plate can all be modified at any time, but only changes to the replica count affect
existing pods.

UNDERSTANDING THE EFFECT OF CHANGING THE CONTROLLER’S LABEL SELECTOR OR POD TEMPLATE
Changes to the label selector and the pod template have no effect on existing pods.
Changing the label selector makes the existing pods fall out of the scope of the
ReplicationController, so the controller stops caring about them. ReplicationCon-
trollers also don’t care about the actual “contents” of its pods (the container images,
environment variables, and other things) after they create the pod. The template
therefore only affects new pods created by this ReplicationController. You can think
of it as a cookie cutter for cutting out new pods.

UNDERSTANDING THE BENEFITS OF USING A REPLICATIONCONTROLLER
Like many things in Kubernetes, a ReplicationController, although an incredibly sim-
ple concept, provides or enables the following powerful features:

= It makes sure a pod (or multiple pod replicas) is always running by starting a
new pod when an existing one goes missing.

= When a cluster node fails, it creates replacement replicas for all the pods that
were running on the failed node (those that were under the Replication-
Controller’s control).

= It enables easy horizontal scaling of pods—both manual and automatic (see
horizontal pod auto-scaling in chapter 15).

NOTE A pod instance is never relocated to another node. Instead, the
ReplicationController creates a completely new pod instance that has no rela-
tion to the instance it’s replacing.

Creating a ReplicationController

Let’s look at how to create a ReplicationController and then see how it keeps your
pods running. Like pods and other Kubernetes resources, you create a Replication-
Controller by posting a JSON or YAML descriptor to the Kubernetes API server.

You’re going to create a YAML file called kubia-rc.yaml for your Replication-
Controller, as shown in the following listing.

Listing 4.4 A YAML definition of a ReplicationController: kubia-rc.yaml

This manifest defines a
ReplicationController (RC)
apiVersion: vl

kind: ReplicationController < The name of this
metadata: ReplicationController
name: kubia
spec: QJ The des'ired number
replicas: 3 of pod instances
selector: ‘ The pod selector determining
app: kubia what pods the RC is operating on



94

4.2.3

CHAPTER 4 Replication and other controllers: deploying managed pods

template:
metadata:
labels:
app: kubia
spec:
containers:
kubia
luksa/kubia

The pod template
for creating new
pods

- name:
image:
ports:
- containerPort:

8080

When you post the file to the API server, Kubernetes creates a new Replication-
Controller named kubia, which makes sure three pod instances always match the
label selector app=kubia. When there aren’t enough pods, new pods will be created
from the provided pod template. The contents of the template are almost identical to
the pod definition you created in the previous chapter.

The pod labels in the template must obviously match the label selector of the
ReplicationController; otherwise the controller would create new pods indefinitely,
because spinning up a new pod wouldn’t bring the actual replica count any closer to
the desired number of replicas. To prevent such scenarios, the API server verifies the
ReplicationController definition and will not accept it if it’s misconfigured.

Not specifying the selector at all is also an option. In that case, it will be configured
automatically from the labels in the pod template.

TIP  Don’t specify a pod selector when defining a ReplicationController. Let
Kubernetes extract it from the pod template. This will keep your YAML
shorter and simpler.

To create the ReplicationController, use the kubectl create command, which you
already know:

$ kubectl create -f kubia-rc.yaml
replicationcontroller "kubia" created

As soon as the ReplicationController is created, it goes to work. Let’s see what
it does.

Seeing the ReplicationController in action

Because no pods exist with the app=kubia label, the ReplicationController should
spin up three new pods from the pod template. List the pods to see if the Replication-
Controller has done what it’s supposed to:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
kubia-53thy 0/1 ContainerCreating 0 2s
kubia-k0xz6 0/1 ContainerCreating 0 2s
kubia-g3vkg 0/1 ContainerCreating 0 2s



Introducing ReplicationControllers 95

Indeed, it has! You wanted three pods, and it created three pods. It’s now managing
those three pods. Next you’ll mess with them a little to see how the Replication-
Controller responds.

SEEING THE REPLICATIONCONTROLLER RESPOND TO A DELETED POD
First, you’ll delete one of the pods manually to see how the ReplicationController spins
up a new one immediately, bringing the number of matching pods back to three:

$ kubectl delete pod kubia-53thy
pod "kubia-53thy" deleted

Listing the pods again shows four of them, because the one you deleted is terminat-
ing, and a new pod has already been created:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
kubia-53thy 1/1 Terminating 0 3m
kubia-oini2 0/1 ContainerCreating 0 2s
kubia-k0xz6 1/1 Running 0 3m
kubia-g3vkg 1/1 Running 0 3m

The ReplicationController has done its job again. It’s a nice little helper, isn’t it?

GETTING INFORMATION ABOUT A REPLICATIONCONTROLLER

Now, let’s see what information the kubectl get command shows for Replication-
Controllers:

$ kubectl get rc

NAME DESIRED CURRENT READY AGE
kubia 3 3 2 3m

NOTE We’re using rc as a shorthand for replicationcontroller.

You see three columns showing the desired number of pods, the actual number of
pods, and how many of them are ready (you’ll learn what that means in the next chap-
ter, when we talk about readiness probes).

You can see additional information about your ReplicationController with the
kubectl describe command, as shown in the following listing.

Listing 4.5 Displaying details of a ReplicationController with kubectl describe

$ kubectl describe rc kubia The actual vs. the
Name : kubia desired number of
Namespace: default pod instances
Selector: app=kubia
Labels: app=kubia Num@erof
Annotations: <none> pod instances
. ] . per pod

Replicas: 3 current / 3 desired
Pods Status: 4 Running / 0 Waiting / 0 Succeeded / 0 Failed < status
Pod Template:

Labels: app=kubia

Containers:



96 CHAPTER 4 Replication and other controllers: deploying managed pods

Volumes: <none> The events
Events: related to this
From Type Reason Message ReplicationController
replication-controller Normal SuccessfulCreate Created pod: kubia-53thy
replication-controller Normal SuccessfulCreate Created pod: kubia-k0xz6
replication-controller Normal SuccessfulCreate Created pod: kubia-g3vkg
replication-controller Normal SuccessfulCreate Created pod: kubia-oini2

The current number of replicas matches the desired number, because the controller
has already created a new pod. It shows four running pods because a pod that’s termi-
nating is still considered running, although itisn’t counted in the current replica count.

The list of events at the bottom shows the actions taken by the Replication-
Controller—it has created four pods so far.

UNDERSTANDING EXACTLY WHAT CAUSED THE CONTROLLER TO CREATE A NEW POD

The controller is responding to the deletion of a pod by creating a new replacement
pod (see figure 4.4). Well, technically, it isn’t responding to the deletion itself, but the
resulting state—the inadequate number of pods.

While a ReplicationController is immediately notified about a pod being deleted
(the API server allows clients to watch for changes to resources and resource lists), that’s
not what causes it to create a replacement pod. The notification triggers the controller
to check the actual number of pods and take appropriate action.

Before deletion After deletion
Delete kubia-53thy

-

app: kubia app: kubia ; app: kubia app: kubia
Pod: Pod: Pod: Pod
kubia-q3vkg kubia-k0xz6 kubia-q3vkg kubia-kOxz6
app: kubia 2 app: kubia |
Pod: Pod:
kubia-53thy kubia-oini2
[ContainerCreating] [Terminating]
ReplicationController: kubia ReplicationController: kubia
Replicas: 3 Replicas: 3
Selector: app=kubia Selector: app=kubia

Figure 4.4 If a pod disappears, the ReplicationController sees too few pods and creates a new replacement pod.



Introducing ReplicationControllers 97

RESPONDING TO A NODE FAILURE

Seeing the ReplicationController respond to the manual deletion of a pod isn’t too
interesting, so let’s look at a better example. If you’re using Google Kubernetes Engine
to run these examples, you have a three-node Kubernetes cluster. You’re going to dis-
connect one of the nodes from the network to simulate a node failure.

NOTE If you're using Minikube, you can’t do this exercise, because you only
have one node that acts both as a master and a worker node.

If a node fails in the non-Kubernetes world, the ops team would need to migrate the
applications running on that node to other machines manually. Kubernetes, on the
other hand, does that automatically. Soon after the ReplicationController detects that
its pods are down, it will spin up new pods to replace them.

Let’s see this in action. You need to ssh into one of the nodes with the gcloud
compute ssh command and then shut down its network interface with sudo ifconfig
eth0 down, as shown in the following listing.

NOTE Choose a node that runs at least one of your pods by listing pods with
the -o wide option.

Listing 4.6 Simulating a node failure by shutting down its network interface

$ gcloud compute ssh gke-kubia-default-pool-b46381f1l-zwko
Enter passphrase for key '/home/luksa/.ssh/google compute engine':

Welcome to Kubernetes v1.6.4!

luksa@gke-kubia-default-pool-b46381lfl-zwko ~ $ sudo ifconfig eth0 down

When you shut down the network interface, the ssh session will stop responding, so
you need to open up another terminal or hard-exit from the ssh session. In the new
terminal you can list the nodes to see if Kubernetes has detected that the node is
down. This takes a minute or so. Then, the node’s status is shown as NotReady:

$ kubectl get node

NAME STATUS AGE Node isn’t ready,
gke-kubia-default-pool-b46381fl-opc5  Ready 5h because it’s
gke-kubia-default-pool-b46381f1-s8g] Ready 5h disconnected from
gke-kubia-default-pool-b46381fl-zwko NotReady 5h the network

If you list the pods now, you’ll still see the same three pods as before, because Kuber-
netes waits a while before rescheduling pods (in case the node is unreachable because
of a temporary network glitch or because the Kubelet is restarting). If the node stays
unreachable for several minutes, the status of the pods that were scheduled to that
node changes to Unknown. At that point, the ReplicationController will immediately
spin up a new pod. You can see this by listing the pods again:



98

424

CHAPTER 4 Replication and other controllers: deploying managed pods

$ kubectl get pods . .
get P This pod’s status is

NAME READY STATUS RESTARTS AGE K b it
kubia-o0ini2 1/1 Running 0 10m ::d:t::l:;w::ca::;lles
kubia-k0xz6 1/1 Running 0 10m .
kubia-g3vkg 1/1 Unknown 0 10m This pod was created
kubia-dmdck 1/1 Running 0 5s

five seconds ago.

Looking at the age of the pods, you see that the kubia-dmdck pod is new. You again
have three pod instances running, which means the ReplicationController has again
done its job of bringing the actual state of the system to the desired state.

The same thing happens if a node fails (either breaks down or becomes unreach-
able). No immediate human intervention is necessary. The system heals itself
automatically.

To bring the node back, you need to reset it with the following command:

$ gcloud compute instances reset gke-kubia-default-pool-b46381fl-zwko

When the node boots up again, its status should return to Ready, and the pod whose
status was Unknown will be deleted.

Moving pods in and out of the scope of a ReplicationController

Pods created by a ReplicationController aren’t tied to the ReplicationController in
any way. At any moment, a ReplicationController manages pods that match its label
selector. By changing a pod’s labels, it can be removed from or added to the scope
of a ReplicationController. It can even be moved from one ReplicationController to
another.

TIP  Although a pod isn’t tied to a ReplicationController, the pod does refer-
ence it in the metadata.ownerReferences field, which you can use to easily
find which ReplicationController a pod belongs to.

If you change a pod’s labels so they no longer match a ReplicationController’s label
selector, the pod becomes like any other manually created pod. It’s no longer man-
aged by anything. If the node running the pod fails, the pod is obviously not resched-
uled. But keep in mind that when you changed the pod’s labels, the replication
controller noticed one pod was missing and spun up a new pod to replace it.

Let’s try this with your pods. Because your ReplicationController manages pods
that have the app=kubia label, you need to either remove this label or change its value
to move the pod out of the ReplicationController’s scope. Adding another label will
have no effect, because the ReplicationController doesn’t care if the pod has any addi-
tional labels. It only cares whether the pod has all the labels referenced in the label
selector.



Introducing ReplicationControllers 99

ADDING LABELS TO PODS MANAGED BY A REPLICATIONCONTROLLER
Let’s confirm that a ReplicationController doesn’t care if you add additional labels to
its managed pods:

$ kubectl label pod kubia-dmdck type=special
pod "kubia-dmdck" labeled

$ kubectl get pods --show-labels

NAME READY STATUS RESTARTS AGE LABELS

kubia-oini2 1/1 Running 0 11lm app=kubia

kubia-k0xz6 1/1 Running 0 1lm app=kubia

kubia-dmdck 1/1 Running 0 im app=kubia, type=special

You’ve added the type=special label to one of the pods. Listing all pods again shows
the same three pods as before, because no change occurred as far as the Replication-
Controller is concerned.

CHANGING THE LABELS OF A MANAGED POD

Now, you’ll change the app=kubia label to something else. This will make the pod no
longer match the ReplicationController’s label selector, leaving it to only match two
pods. The ReplicationController should therefore start a new pod to bring the num-
ber back to three:

$ kubectl label pod kubia-dmdck app=foo --overwrite
pod "kubia-dmdck" labeled

The --overwrite argument is necessary; otherwise kubectl will only print out a warn-
ing and won’t change the label, to prevent you from inadvertently changing an exist-
ing label’s value when your intent is to add a new one.

Listing all the pods again should now show four pods:

Newly created pod that replaces
the pod you removed from the

scope of the ReplicationController
$ kubectl get pods -L app

NAME READY STATUS RESTARTS AGE APP

kubia-2gneh 0/1 ContainerCreating 0 2s kubia

kubia-oini2 1/1 Running 0 20m kubia

kubia-k0xz6 1/1 Running 0 20m kubia Pod no longer

kubia-dmdck 1/1 Running 0 10m foo Q—‘ managed by the
ReplicationController

NOTE You're using the -L app option to display the app label in a column.

There, you now have four pods altogether: one that isn’t managed by your Replication-
Controller and three that are. Among them is the newly created pod.

Figure 4.5 illustrates what happened when you changed the pod’s labels so they no
longer matched the ReplicationController’s pod selector. You can see your three pods
and your ReplicationController. After you change the pod’s label from app=kubia to
app=foo, the ReplicationController no longer cares about the pod. Because the con-
troller’s replica count is set to 3 and only two pods match the label selector, the



100 CHAPTER 4 Replication and other controllers: deploying managed pods

Initial state After re-labelling
Re-label kubia-dmdck

.

app: kubia
type: special
Pod:

kubia-dmdck

type: special
Pod:

kubia-dmdck

app: kubia

Pod:
kubia-oini2

Pod:
kubia-oini2

app: kubia
Pod:

kubia-k0xz6

app: kubia
Pod:

kubia-k0xz6

Pod:
kubia-2gneh

[ContainerCreating]

ReplicationController: kubia ReplicationController: kubia
Replicas: 3 Replicas: 3
Selector: app=kubia Selector: app=kubia

Figure 4.5 Removing a pod from the scope of a ReplicationController by changing its labels

ReplicationController spins up pod kubia-2gneh to bring the number back up to
three. Pod kubia-dmdck is now completely independent and will keep running until
you delete it manually (you can do that now, because you don’t need it anymore).

REMOVING PODS FROM CONTROLLERS IN PRACTICE

Removing a pod from the scope of the ReplicationController comes in handy when
you want to perform actions on a specific pod. For example, you might have a bug
that causes your pod to start behaving badly after a specific amount of time or a spe-
cific event. If you know a pod is malfunctioning, you can take it out of the Replication-
Controller’s scope, let the controller replace it with a new one, and then debug or
play with the pod in any way you want. Once you’re done, you delete the pod.

CHANGING THE REPLICATIONCONTROLLER’S LABEL SELECTOR

As an exercise to see if you fully understand ReplicationControllers, what do you
think would happen if instead of changing the labels of a pod, you modified the
ReplicationController’s label selector?

If your answer is that it would make all the pods fall out of the scope of the
ReplicationController, which would result in it creating three new pods, you're abso-
lutely right. And it shows that you understand how ReplicationControllers work.

Kubernetes does allow you to change a ReplicationController’s label selector, but
that’s not the case for the other resources that are covered in the second half of this



Introducing ReplicationControllers 101

chapter and which are also used for managing pods. You’ll never change a controller’s
label selector, but you’ll regularly change its pod template. Let’s take a look at that.

4.2.5 Changing the pod template

A ReplicationController’s pod template can be modified at any time. Changing the pod
template is like replacing a cookie cutter with another one. It will only affect the cookies
you cut out afterward and will have no effect on the ones you’ve already cut (see figure
4.6). To modify the old pods, you’d need to delete them and let the Replication-
Controller replace them with new ones based on the new template.

Change Delete RC creates
template a pod new pod
Replication | Replicas: 3 Replication | Replicas: 3 Replication | Replicas: 3 Replication | Replicas: 3

Controller | Template: <> Controller | Template: () Controller | Template: () Controller | Template: ()
POO | 00O | VO% Q0D

C D 1 C D 1 C

Figure 4.6 Changing a ReplicationController’s pod template only affects pods created afterward and has no
effect on existing pods.

As an exercise, you can try editing the ReplicationController and adding a label to the
pod template. You can edit the ReplicationController with the following command:

$ kubectl edit rc kubia

This will open the ReplicationController’s YAML definition in your default text editor.
Find the pod template section and add an additional label to the metadata. After you
save your changes and exit the editor, kubectl will update the ReplicationController
and print the following message:

replicationcontroller "kubia" edited

You can now list pods and their labels again and confirm that they haven’t changed.
But if you delete the pods and wait for their replacements to be created, you’ll see the
new label.

Editing a ReplicationController like this to change the container image in the pod
template, deleting the existing pods, and letting them be replaced with new ones from
the new template could be used for upgrading pods, but you’ll learn a better way of
doing that in chapter 9.



102

4.2.6

CHAPTER 4 Replication and other controllers: deploying managed pods

Configuring kubectl edit to use a different text editor

You can tell kubectl to use a text editor of your choice by setting the KUBE_EDITOR
environment variable. For example, if you'd like to use nano for editing Kubernetes
resources, execute the following command (or put it into your ~/.bashrc or an
equivalent file):

export KUBE EDITOR="/usr/bin/nano"

If the KUBE_EDITOR environment variable isn’t set, kubectl edit falls back to using
the default editor, usually configured through the EDITOR environment variable.

Horizontally scaling pods

You've seen how ReplicationControllers make sure a specific number of pod instances
is always running. Because it’s incredibly simple to change the desired number of rep-
licas, this also means scaling pods horizontally is trivial.

Scaling the number of pods up or down is as easy as changing the value of the rep-
licas field in the ReplicationController resource. After the change, the Replication-
Controller will either see too many pods exist (when scaling down) and delete part of
them, or see too few of them (when scaling up) and create additional pods.

SCALING UP A REPLICATIONCONTROLLER

Your ReplicationController has been keeping three instances of your pod running.
You're going to scale that number up to 10 now. As you may remember, you've
already scaled a ReplicationController in chapter 2. You could use the same com-
mand as before:

$ kubectl scale rc kubia --replicas=10

But you’ll do it differently this time.

SCALING A REPLICATIONCONTROLLER BY EDITING ITS DEFINITION
Instead of using the kubectl scale command, you're going to scale it in a declarative
way by editing the ReplicationController’s definition:

$ kubectl edit rc kubia

When the text editor opens, find the spec.replicas field and change its value to 10,
as shown in the following listing.

Listing 4.7 Editing the RC in a text editor by running kubectl edit

# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving

# this file will be reopened with the relevant failures.

apiversion: vl

kind: ReplicationController



4.2.7

Introducing ReplicationControllers 103

metadata:
spec: Change the number 3
replicas: 3 to number 10 in
selector: this line.
app: kubia

When you save the file and close the editor, the ReplicationController is updated and
it immediately scales the number of pods to 10:
$ kubectl get rc

NAME DESIRED CURRENT READY AGE
kubia 10 10 4 21m

There you go. If the kubectl scale command makes it look as though you’re telling
Kubernetes exactly what to do, it’s now much clearer that you’re making a declarative
change to the desired state of the ReplicationController and not telling Kubernetes to
do something.

SCALING DOWN WITH THE KUBECTL SCALE COMMAND
Now scale back down to 3. You can use the kubectl scale command:

$ kubectl scale rc kubia --replicas=3

All this command does is modify the spec.replicas field of the ReplicationController’s
definition—Ilike when you changed it through kubectl edit.

UNDERSTANDING THE DECLARATIVE APPROACH TO SCALING

Horizontally scaling pods in Kubernetes is a matter of stating your desire: “I want to
have x number of instances running.” You’re not telling Kubernetes what or how to do
it. You’re just specifying the desired state.

This declarative approach makes interacting with a Kubernetes cluster easy. Imag-
ine if you had to manually determine the current number of running instances and
then explicitly tell Kubernetes how many additional instances to run. That’s more
work and is much more error-prone. Changing a simple number is much easier, and
in chapter 15, you’ll learn that even that can be done by Kubernetes itself if you
enable horizontal pod auto-scaling.

Deleting a ReplicationController

When you delete a ReplicationController through kubectl delete, the pods are also
deleted. But because pods created by a ReplicationController aren’t an integral part
of the ReplicationController, and are only managed by it, you can delete only the
ReplicationController and leave the pods running, as shown in figure 4.7.

This may be useful when you initially have a set of pods managed by a Replication-
Controller, and then decide to replace the ReplicationController with a ReplicaSet,
for example (you’ll learn about them next.). You can do this without affecting the



104

CHAPTER 4 Replication and other controllers: deploying managed pods

Before the RC deletion After the RC deletion

Delete RC

Pod:
kubia-q3vkg

app: kubia
Pod:

kubia-k0xz6

>

app: kubia
Pod:

kubia-q3vkg

app: kubia
Pod:

kubia-k0xz6

app: kubia
Pod:

kubia-53thy

app: kubia
Pod:

kubia-53thy

ReplicationController: kubia

Replicas: 3
Selector: app=kubia

Figure 4.7 Deleting a replication controller with - -cascade=false leaves pods unmanaged.

4.3

pods and keep them running without interruption while you replace the Replication-
Controller that manages them.

When deleting a ReplicationController with kubectl delete, you can keep its
pods running by passing the --cascade=false option to the command. Try that now:

$ kubectl delete rc kubia --cascade=false
replicationcontroller "kubia" deleted

You've deleted the ReplicationController so the pods are on their own. They are no
longer managed. But you can always create a new ReplicationController with the
proper label selector and make them managed again.

Using ReplicaSets instead of ReplicationControllers

Initially, ReplicationControllers were the only Kubernetes component for replicating
pods and rescheduling them when nodes failed. Later, a similar resource called a
ReplicaSet was introduced. It’s a new generation of ReplicationController and
replaces it completely (ReplicationControllers will eventually be deprecated).

You could have started this chapter by creating a ReplicaSet instead of a Replication-
Controller, but I felt it would be a good idea to start with what was initially available in
Kubernetes. Plus, you’ll still see ReplicationControllers used in the wild, so it’s good
for you to know about them. That said, you should always create ReplicaSets instead
of ReplicationControllers from now on. They’re almost identical, so you shouldn’t
have any trouble using them instead.



4.3.1

4.3.2

Using ReplicaSets instead of ReplicationControllers 105

You usually won’t create them directly, but instead have them created automati-
cally when you create the higher-level Deployment resource, which you’ll learn about
in chapter 9. In any case, you should understand ReplicaSets, so let’s see how they dif-
fer from ReplicationControllers.

Comparing a ReplicaSet to a ReplicationController

A ReplicaSet behaves exactly like a ReplicationController, but it has more expressive
pod selectors. Whereas a ReplicationController’s label selector only allows matching
pods that include a certain label, a ReplicaSet’s selector also allows matching pods
that lack a certain label or pods that include a certain label key, regardless of
its value.

Also, for example, a single ReplicationController can’t match pods with the label
env=production and those with the label env=devel at the same time. It can only match
either pods with the env=production label or pods with the env=devel label. But a sin-
gle ReplicaSet can match both sets of pods and treat them as a single group.

Similarly, a ReplicationController can’t match pods based merely on the presence
of alabel key, regardless of its value, whereas a ReplicaSet can. For example, a Replica-
Set can match all pods that include a label with the key env, whatever its actual value is
(you can think of it as env=*).

Defining a ReplicaSet

You’re going to create a ReplicaSet now to see how the orphaned pods that were cre-
ated by your ReplicationController and then abandoned earlier can now be adopted
by a ReplicaSet. First, you’ll rewrite your ReplicationController into a ReplicaSet by
creating a new file called kubia-replicaset.yaml with the contents in the following
listing.

Listing 4.8 A YAML definition of a ReplicaSet: kubia-replicaset.yaml

iigér;;;rﬂczgzi/ﬂbetaz ReplicaSets aren’t part of the v1
: API, but belong to the apps API
metadata: ' group and version v1beta2.
name: kubia
spec:
replicas: 3 You’re using the simpler matchLabels
selector: selector here, which is much like a
matchLabels: ReplicationController’s selector.
app: kubia
template:
metadata:
labels:

The template is
the same as in the
ReplicationController.

app: kubia
spec:
containers:
- name: kubia
image: luksa/kubia




106 CHAPTER 4 Replication and other controllers: deploying managed pods

The first thing to note is that ReplicaSets aren’t part of the vl API, so you need to
ensure you specity the proper apiVersion when creating the resource. You're creating a
resource of type ReplicaSet which has much the same contents as the Replication-
Controller you created earlier.

The only difference is in the selector. Instead of listing labels the pods need to
have directly under the selector property, you're specifying them under selector
.matchLabels. This is the simpler (and less expressive) way of defining label selectors
in a ReplicaSet. Later, you’ll look at the more expressive option, as well.

About the API version attribute
This is your first opportunity to see that the apiversion property specifies two things:

The API group (which is apps in this case)
The actual API version (vlbeta2)

You’ll see throughout the book that certain Kubernetes resources are in what’s called
the core API group, which doesn’t need to be specified in the apiversion field (you
just specify the version—for example, you’ve been using apiVersion: v1 when
defining Pod resources). Other resources, which were introduced in later Kubernetes
versions, are categorized into several API groups. Look at the inside of the book’s
covers to see all resources and their respective API groups.

Because you still have three pods matching the app=kubia selector running from ear-
lier, creating this ReplicaSet will not cause any new pods to be created. The ReplicaSet
will take those existing three pods under its wing.

4.3.3 Creating and examining a ReplicaSet

Create the ReplicaSet from the YAML file with the kubectl create command. After
that, you can examine the ReplicaSet with kubectl get and kubectl describe:

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
kubia 3 3 3 3s

TIP  Use rs shorthand, which stands for replicaset.

$ kubectl describe rs

Name : kubia

Namespace: default

Selector: app=kubia

Labels: app=kubia

Annotations: <none>

Replicas: 3 current / 3 desired

Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed

Pod Template:
Labels: app=kubia



4.3.4

Using ReplicaSets instead of ReplicationControllers 107

Containers: .
Volumes: <none>
Events: <none>

As you can see, the ReplicaSet isn’t any different from a ReplicationController. It’s
showing it has three replicas matching the selector. If you list all the pods, you’ll see
they’re still the same three pods you had before. The ReplicaSet didn’t create any new
ones.

Using the ReplicaSet’s more expressive label selectors

The main improvements of ReplicaSets over ReplicationControllers are their more
expressive label selectors. You intentionally used the simpler matchLabels selector in
the first ReplicaSet example to see that ReplicaSets are no different from Replication-
Controllers. Now, you’ll rewrite the selector to use the more powerful matchExpressions
property, as shown in the following listing.

Listing 4.9 A matchExpressions selector: kubia-replicaset-matchexpressions.yaml

selector: This selector requires the pod to
matchExpressions: contain a label with the “app” key.
- key: app

operator: In
P The label’s value
values: “ s 9
. must be “kubia”.

- kubia

NOTE Only the selector is shown. You'll find the whole ReplicaSet definition
in the book’s code archive.

You can add additional expressions to the selector. As in the example, each expression
must contain a key, an operator, and possibly (depending on the operator) a list of
values. You’ll see four valid operators:

= In-Label’s value must match one of the specified values.

= NotIn-Label’s value must not match any of the specified values.

= Exists—Pod must include a label with the specified key (the value isn’t import-
ant). When using this operator, you shouldn’t specify the values field.

= DoesNotExist—Pod must not include a label with the specified key. The values
property must not be specified.

If you specify multiple expressions, all those expressions must evaluate to true for the
selector to match a pod. If you specify both matchLabels and matchExpressions, all
the labels must match and all the expressions must evaluate to true for the pod to
match the selector.



108

4.3.5

44

CHAPTER 4 Replication and other controllers: deploying managed pods

Wrapping up ReplicaSets

This was a quick introduction to ReplicaSets as an alternative to ReplicationControllers.
Remember, always use them instead of ReplicationControllers, but you may still find
ReplicationControllers in other people’s deployments.

Now, delete the ReplicaSet to clean up your cluster a little. You can delete the
ReplicaSet the same way you’d delete a ReplicationController:

$ kubectl delete rs kubia
replicaset "kubia" deleted

Deleting the ReplicaSet should delete all the pods. List the pods to confirm that’s
the case.

Running exactly one pod on each node with
DaemonSets

Both ReplicationControllers and ReplicaSets are used for running a specific number
of pods deployed anywhere in the Kubernetes cluster. But certain cases exist when you
want a pod to run on each and every node in the cluster (and each node needs to run
exactly one instance of the pod, as shown in figure 4.8).

Those cases include infrastructure-related pods that perform system-level opera-
tions. For example, you’ll want to run a log collector and a resource monitor on every
node. Another good example is Kubernetes’ own kube-proxy process, which needs to
run on all nodes to make services work.

Node 1 Node 2 Node 3 Node 4
) )
Pod [~ ~— ~——1 Pod
—_ _

N
Pod -1 Pod
P I~ ™~ P
- <7ﬁﬁ4’. -
S q SR
ReplicaSet DaemonSet
Replicas: 5 Exactly one replica

on each node

Figure 4.8 DaemonSets run only a single pod replica on each node, whereas ReplicaSets
scatter them around the whole cluster randomly.



44.1

4.4.2

Running exactly one pod on each node with DaemonSets 109

Outside of Kubernetes, such processes would usually be started through system init
scripts or the systemd daemon during node boot up. On Kubernetes nodes, you can
still use systemd to run your system processes, but then you can’t take advantage of all
the features Kubernetes provides.

Using a DaemonSet to run a pod on every node

To run a pod on all cluster nodes, you create a DaemonSet object, which is much
like a ReplicationController or a ReplicaSet, except that pods created by a Daemon-
Set already have a target node specified and skip the Kubernetes Scheduler. They
aren’t scattered around the cluster randomly.

A DaemonSet makes sure it creates as many pods as there are nodes and deploys
each one on its own node, as shown in figure 4.8.

Whereas a ReplicaSet (or ReplicationController) makes sure that a desired num-
ber of pod replicas exist in the cluster, a DaemonSet doesn’t have any notion of a
desired replica count. It doesn’t need it because its job is to ensure that a pod match-
ing its pod selector is running on each node.

If a node goes down, the DaemonSet doesn’t cause the pod to be created else-
where. But when a new node is added to the cluster, the DaemonSet immediately
deploys a new pod instance to it. It also does the same if someone inadvertently
deletes one of the pods, leaving the node without the DaemonSet’s pod. Like a Replica-
Set, a DaemonSet creates the pod from the pod template configured in it.

Using a DaemonSet to run pods only on certain nodes

A DaemonSet deploys pods to all nodes in the cluster, unless you specify that the pods
should only run on a subset of all the nodes. This is done by specifying the node-
Selector property in the pod template, which is part of the DaemonSet definition
(similar to the pod template in a ReplicaSet or ReplicationController).

You’ve already used node selectors to deploy a pod onto specific nodes in chapter 3.
A node selector in a DaemonSet is similar—it defines the nodes the DaemonSet must
deploy its pods to.

NOTE Later in the book, you'll learn that nodes can be made unschedulable,
preventing pods from being deployed to them. A DaemonSet will deploy pods
even to such nodes, because the unschedulable attribute is only used by the
Scheduler, whereas pods managed by a DaemonSet bypass the Scheduler
completely. This is usually desirable, because DaemonSets are meant to run
system services, which usually need to run even on unschedulable nodes.

EXPLAINING DAEMONSETS WITH AN EXAMPLE

Let’s imagine having a daemon called ssd-monitor that needs to run on all nodes
that contain a solid-state drive (SSD). You’ll create a DaemonSet that runs this dae-
mon on all nodes that are marked as having an SSD. The cluster administrators have
added the disk=ssd label to all such nodes, so you'll create the DaemonSet with a
node selector that only selects nodes with that label, as shown in figure 4.9.



110

CHAPTER 4 Replication and other controllers: deploying managed pods

Node 1 Node 2 Node 3 Node 4

< disk: ssd < disk: ssd

Pod: Pod:
ssd-monitor ssd-monitor

Unschedulable

Pod:

ssd-monitor

DaemonSet:
sssd-monitor

Node selector:
disk=ssd

Figure 4.9 Using a DaemonSet with a node selector to deploy system pods only on certain
nodes

CREATING A DAEMONSET YAML DEFINITION

You’ll create a DaemonSet that runs a mock ssd-monitor process, which prints
“SSD OK” to the standard output every five seconds. I've already prepared the mock
container image and pushed it to Docker Hub, so you can use it instead of building
your own. Create the YAML for the DaemonSet, as shown in the following listing.

Listing 4.10 A YAML for a DaemonSet: ssd-monitor-daemonset.yaml

apiVersion: apps/vlbeta2
kind: DaemonSet
metadata:
name: ssd-monitor
spec:
selector:
matchLabels:
app: ssd-monitor
template:
metadata:
labels:
app: ssd-monitor
spec:
nodeSelector:
disk: ssd
containers:

DaemonSets are in the
apps API group,
version vibeta2.

node selector, which selects

The pod template includes a
nodes with the disk=ssd label.

- name: main
image: luksa/ssd-monitor

You’re defining a DaemonSet that will run a pod with a single container based on the
luksa/ssd-monitor container image. An instance of this pod will be created for each
node that has the disk=ssd label.



Running exactly one pod on each node with DaemonSets 111

CREATING THE DAEMONSET
You’ll create the DaemonSet like you always create resources from a YAML file:

$ kubectl create -f ssd-monitor-daemonset.yaml
daemonset "ssd-monitor" created

Let’s see the created DaemonSet:

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE-SELECTOR
ssd-monitor 0 0 0 0 0 disk=ssd

Those zeroes look strange. Didn’t the DaemonSet deploy any pods? List the pods:

$ kubectl get po
No resources found.

Where are the pods? Do you know what’s going on? Yes, you forgot to label your nodes
with the disk=ssd label. No problem—you can do that now. The DaemonSet should
detect that the nodes’ labels have changed and deploy the pod to all nodes with a
matching label. Let’s see if that’s true.

ADDING THE REQUIRED LABEL TO YOUR NODE(S)

Regardless if you’re using Minikube, GKE, or another multi-node cluster, you’ll need
to list the nodes first, because you’ll need to know the node’s name when labeling it:
$ kubectl get node

NAME STATUS AGE VERSION
minikube Ready 44 v1l.6.0

Now, add the disk=ssd label to one of your nodes like this:

$ kubectl label node minikube disk=ssd
node "minikube" labeled

NOTE Replace minikube with the name of one of your nodes if you're not
using Minikube.

The DaemonSet should have created one pod now. Let’s see:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
ssd-monitor-hgxwg 1/1 Running 0 35s

Okay; so far so good. If you have multiple nodes and you add the same label to further
nodes, you’ll see the DaemonSet spin up pods for each of them.

REMOVING THE REQUIRED LABEL FROM THE NODE
Now, imagine you’ve made a mistake and have mislabeled one of the nodes. It has a
spinning disk drive, not an SSD. What happens if you change the node’s label?

$ kubectl label node minikube disk=hdd --overwrite
node "minikube" labeled



112

4.5

4.5.1

CHAPTER 4 Replication and other controllers: deploying managed pods

Let’s see if the change has any effect on the pod that was running on that node:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
ssd-monitor-hgxwg 1/1 Terminating 0 4m

The pod is being terminated. But you knew that was going to happen, right? This
wraps up your exploration of DaemonSets, so you may want to delete your ssd-monitor
DaemonSet. If you still have any other daemon pods running, you’ll see that deleting
the DaemonSet deletes those pods as well.

Running pods that perform a single completable task

Up to now, we’ve only talked about pods than need to run continuously. You’ll have
cases where you only want to run a task that terminates after completing its work.
ReplicationControllers, ReplicaSets, and DaemonSets run continuous tasks that are
never considered completed. Processes in such pods are restarted when they exit. But
in a completable task, after its process terminates, it should not be restarted again.

Introducing the Job resource

Kubernetes includes support for this through the Job resource, which is similar to the
other resources we’ve discussed in this chapter, but it allows you to run a pod whose
container isn’t restarted when the process running inside finishes successfully. Once it
does, the pod is considered complete.

In the event of a node failure, the pods on that node that are managed by a Job will
be rescheduled to other nodes the way ReplicaSet pods are. In the event of a failure of
the process itself (when the process returns an error exit code), the Job can be config-
ured to either restart the container or not.

Figure 4.10 shows how a pod created by a Job is rescheduled to a new node if the
node it was initially scheduled to fails. The figure also shows both a managed pod,
which isn’t rescheduled, and a pod backed by a ReplicaSet, which is.

For example, Jobs are useful for ad hoc tasks, where it’s crucial that the task fin-
ishes properly. You could run the task in an unmanaged pod and wait for it to finish,
but in the event of a node failing or the pod being evicted from the node while it is
performing its task, you’d need to manually recreate it. Doing this manually doesn’t
make sense—especially if the job takes hours to complete.

An example of such a job would be if you had data stored somewhere and you
needed to transform and export it somewhere. You’re going to emulate this by run-
ning a container image built on top of the busybox image, which invokes the sleep
command for two minutes. I’ve already built the image and pushed it to Docker Hub,
but you can peek into its Dockerfile in the book’s code archive.



4.5.2

Running pods that perform a single completable task 113

Pod A isn’t rescheduled,
because there is nothing
managing it.

_/

| Pod A (unmanaged)

Node 1 | Pod B (managed by a ReplicaSet)

| Pod C (managed by a Job)

I
Pod B2 (managed by a ReplicaSet)

Node 2

Pod C2 (managed by a Job)

Time

Node 1 fails Job C2 finishes

Figure 4.10 Pods managed by Jobs are rescheduled until they finish successfully.

Defining a Job resource

Create the Job manifest as in the following listing.

Listing 4.11 A YAML definition of a Job: exporter.yaml

apiVersion: batch/vl Jobs are in the batch
kind: Job API group, version v1.
metadata:

name: batch-job
spec:

You’re not specifying a pod

template: selector (it will be created
metadata: based on the labels in the
labels: pod template).
app: batch-job
spec:
restartPolicy: OnFailure jobscaﬁtusethe
containers:

default restart policy,

- name: main which is Always.

image: luksa/batch-job

Jobs are part of the batch API group and vl API version. The YAML defines a
resource of type Job that will run the luksa/batch-job image, which invokes a pro-
cess that runs for exactly 120 seconds and then exits.

In a pod’s specification, you can specify what Kubernetes should do when the
processes running in the container finish. This is done through the restartPolicy



114

4.5.3

4.5.4

CHAPTER 4 Replication and other controllers: deploying managed pods

pod spec property, which defaults to Always. Job pods can’t use the default policy,
because they're not meant to run indefinitely. Therefore, you need to explicitly set
the restart policy to either OnFailure or Never. This setting is what prevents the con-
tainer from being restarted when it finishes (not the fact that the pod is being man-
aged by a Job resource).

Seeing a Job run a pod

After you create this Job with the kubectl create command, you should see it start up
a pod immediately:

$ kubectl get jobs

NAME DESIRED SUCCESSFUL AGE

batch-job 1 0 2s

$ kubectl get po

NAME READY STATUS RESTARTS AGE
batch-job-28gf4 1/1 Running 0 4s

After the two minutes have passed, the pod will no longer show up in the pod list and
the Job will be marked as completed. By default, completed pods aren’t shown when
you list pods, unless you use the --show-all (or -a) switch:

$ kubectl get po -a

NAME READY STATUS RESTARTS AGE
batch-job-28gf4 0/1 Completed 0 2m

The reason the pod isn’t deleted when it completes is to allow you to examine its logs;
for example:
$ kubectl logs batch-job-28gf4

Fri Apr 29 09:58:22 UTC 2016 Batch job starting
Fri Apr 29 10:00:22 UTC 2016 Finished succesfully

The pod will be deleted when you delete it or the Job that created it. Before you do
that, let’s look at the Job resource again:
$ kubectl get job

NAME DESIRED SUCCESSFUL AGE
batch-job 1 1 9m

The Job is shown as having completed successfully. But why is that piece of informa-
tion shown as a number instead of as yes or true? And what does the DESIRED column
indicate?

Running multiple pod instances in a Job

Jobs may be configured to create more than one pod instance and run them in paral-
lel or sequentially. This is done by setting the completions and the parallelism prop-
erties in the Job spec.



Running pods that perform a single completable task 115

RUNNING JOB PODS SEQUENTIALLY
If you need a Job to run more than once, you set completions to how many times you
want the Job’s pod to run. The following listing shows an example.

Listing 4.12 A Job requiring multiple completions: multi-completion-batch-job.yaml

apiVersion: batch/vl

kind: Job

metadata:
name: multi-completion-batch-job Seﬁﬁ@comphﬁonsto

spec: 5 makes this Job run
completions: 5 five pods sequentially.
template:

<template is the same as in listing 4.11>

This Job will run five pods one after the other. It initially creates one pod, and when
the pod’s container finishes, it creates the second pod, and so on, until five pods com-
plete successfully. If one of the pods fails, the Job creates a new pod, so the Job may
create more than five pods overall.

RUNNING JOB PODS IN PARALLEL

Instead of running single Job pods one after the other, you can also make the Job run
multiple pods in parallel. You specify how many pods are allowed to run in parallel
with the parallelism Job spec property, as shown in the following listing.

Listing 4.13 Running Job pods in parallel: multi-completion-parallel-batch-job.yaml

apiVersion: batch/vl

kind: Job

metadata: This job must ensure
name: multi-completion-batch-job five pods complete

spec: successfully.

completions: 5

parallelism: 2 Up to two pods

template: can run in parallel.
<same as in listing 4.11>

By setting parallelism to 2, the Job creates two pods and runs them in parallel:

$ kubectl get po

NAME READY STATUS RESTARTS AGE
multi-completion-batch-job-lmmnk 1/1 Running 0 21s
multi-completion-batch-job-gx4ng 1/1 Running 0 21s

As soon as one of them finishes, the Job will run the next pod, until five pods finish
successfully.



116

4.5.5

4.6

4.6.1

CHAPTER 4 Replication and other controllers: deploying managed pods

SCALING A JoB

You can even change a Job’s parallelism property while the Job is running. This is
similar to scaling a ReplicaSet or ReplicationController, and can be done with the
kubectl scale command:

$ kubectl scale job multi-completion-batch-job --replicas 3
job "multi-completion-batch-job" scaled

Because you’ve increased parallelism from 2 to 3, another pod is immediately spun
up, so three pods are now running.

Limiting the time allowed for a Job pod to complete

We need to discuss one final thing about Jobs. How long should the Job wait for a pod
to finish? What if the pod gets stuck and can’t finish at all (or it can’t finish fast
enough)?

A pod’s time can be limited by setting the activeDeadlineSeconds property in the
pod spec. If the pod runs longer than that, the system will try to terminate it and will
mark the Job as failed.

NOTE You can configure how many times a Job can be retried before it is
marked as failed by specifying the spec.backoffLimit field in the Job mani-
fest. If you don't explicitly specify it, it defaults to 6.

Scheduling Jobs to run periodically or once
in the future

Job resources run their pods immediately when you create the Job resource. But many
batch jobs need to be run at a specific time in the future or repeatedly in the specified
interval. In Linux- and UNIX-like operating systems, these jobs are better known as
cron jobs. Kubernetes supports them, too.

A cron job in Kubernetes is configured by creating a CronJob resource. The
schedule for running the job is specified in the well-known cron format, so if you’re
familiar with regular cron jobs, you’ll understand Kubernetes’ CronJobs in a matter
of seconds.

At the configured time, Kubernetes will create a Job resource according to the Job
template configured in the CronJob object. When the Job resource is created, one or
more pod replicas will be created and started according to the Job’s pod template, as
you learned in the previous section. There’s nothing more to it.

Let’s look at how to create Cronjobs.

Creating a CronJob

Imagine you need to run the batch job from your previous example every 15 minutes.
To do that, create a CronJob resource with the following specification.



4.6.2

Scheduling Jobs to run periodically or once in the future 117

Listing 4.14 YAMIL for a CronJob resource: cronjob.yaml

apiVersion: batch/vlbetal

i API group is batch,
kind: CronJdob

version is vibetal

metadata:
name: batch-job-every-fifteen-minutes This iob should ¢ th
spec: is job should run at the
D chedule: "0.15.30.45 + + x xn Q_‘ 0, 15,30 and 45 minutes of
jobTemplate: every hour, every day.
spec:
template:
metadata:
labels:
app: periodic-batch-job The template for the
Job resources that
spec: _ _ will be created by
restartPolicy: OnFailure this Cronjob
containers:
- name: main
image: luksa/batch-job

As you can see, it’s not too complicated. You’ve specified a schedule and a template
from which the Job objects will be created.

CONFIGURING THE SCHEDULE

If you’re unfamiliar with the cron schedule format, you’ll find great tutorials and
explanations online, but as a quick introduction, from left to right, the schedule con-
tains the following five entries:

= Minute

= Hour

= Day of month
= Month

= Day of week.

In the example, you want to run the job every 15 minutes, so the schedule needs to be
"0,15,30,45 * * * *"_which means at the 0, 15, 30 and 45 minutes mark of every hour
(first asterisk), of every day of the month (second asterisk), of every month (third
asterisk) and on every day of the week (fourth asterisk).

If, instead, you wanted it to run every 30 minutes, but only on the first day of the
month, you’d set the schedule to "0,30 * 1 * *", and if you want it to run at 3AM every
Sunday, you’d setitto "0 3 * * 0" (the last zero stands for Sunday).

CONFIGURING THE JOB TEMPLATE
A CronJob creates Job resources from the jobTemplate property configured in the
CronJob spec, so refer to section 4.5 for more information on how to configure it.

Understanding how scheduled jobs are run

Job resources will be created from the CronJob resource at approximately the sched-
uled time. The Job then creates the pods.



118

4.7

CHAPTER 4 Replication and other controllers: deploying managed pods

It may happen that the Job or pod is created and run relatively late. You may have
a hard requirement for the job to not be started too far over the scheduled time. In
that case, you can specify a deadline by specifying the startingDeadlineSeconds field
in the CronJob specification as shown in the following listing.

Listing 4.15 Specifying a startingDeadlineSeconds for a CronJob

apiVersion: batch/vlbetal
kind: CronJdob

spec: At the latest, the pod must
Scl:ledul(E' W0 15 30 45 * * % n start running at 15 seconds
startingDeadlineSeconds: 15 past the scheduled time.

In the example in listing 4.15, one of the times the job is supposed to run is 10:30:00.
If it doesn’t start by 10:30:15 for whatever reason, the job will not run and will be
shown as Failed.

In normal circumstances, a CronJob always creates only a single Job for each exe-
cution configured in the schedule, but it may happen that two Jobs are created at the
same time, or none at all. To combat the first problem, your jobs should be idempo-
tent (running them multiple times instead of once shouldn’t lead to unwanted
results). For the second problem, make sure that the next job run performs any work
that should have been done by the previous (missed) run.

Summary

You've now learned how to keep pods running and have them rescheduled in the
event of node failures. You should now know that

= You can specify a liveness probe to have Kubernetes restart your container as
soon as it’s no longer healthy (where the app defines what’s considered
healthy).

= Pods shouldn’t be created directly, because they will not be re-created if they’re
deleted by mistake, if the node they’re running on fails, or if they're evicted
from the node.

= ReplicationControllers always keep the desired number of pod replicas
running.

= Scaling pods horizontally is as easy as changing the desired replica count on a
ReplicationController.

= Pods aren’t owned by the ReplicationControllers and can be moved between
them if necessary.

= A ReplicationController creates new pods from a pod template. Changing the
template has no effect on existing pods.



Summary 119

ReplicationControllers should be replaced with ReplicaSets and Deployments,
which provide the same functionality, but with additional powerful features.
ReplicationControllers and ReplicaSets schedule pods to random cluster nodes,
whereas DaemonSets make sure every node runs a single instance of a pod
defined in the DaemonSet.

Pods that perform a batch task should be created through a Kubernetes Job
resource, not directly or through a ReplicationController or similar object.
Jobs that need to run sometime in the future can be created through CronJob
resources.



Services: enabling
clients to discover
and talk to pods

This chapter covers

= Creating Service resources to expose a group of
pods at a single address

= Discovering services in the cluster

= Exposing services to external clients

= Connecting to external services from inside the
cluster

= Controlling whether a pod is ready to be part of
the service or not

= Troubleshooting services

You've learned about pods and how to deploy them through ReplicaSets and similar
resources to ensure they keep running. Although certain pods can do their work
independently of an external stimulus, many applications these days are meant to
respond to external requests. For example, in the case of microservices, pods will
usually respond to HTTP requests coming either from other pods inside the cluster
or from clients outside the cluster.

Pods need a way of finding other pods if they want to consume the services they
provide. Unlike in the non-Kubernetes world, where a sysadmin would configure

120



5.1

Introducing services 121

each client app by specifying the exact IP address or hostname of the server providing
the service in the client’s configuration files, doing the same in Kubernetes wouldn’t
work, because

Pods are ephemeral—They may come and go at any time, whether it’s because a
pod is removed from a node to make room for other pods, because someone
scaled down the number of pods, or because a cluster node has failed.
Kubernetes assigns an IP address to a pod after the pod has been scheduled to a node
and before it’s started—Clients thus can’t know the IP address of the server pod
up front.

Horizontal scaling means multiple pods may provide the same service—FEach of those
pods has its own IP address. Clients shouldn’t care how many pods are backing
the service and what their IPs are. They shouldn’t have to keep a list of all the
individual IPs of pods. Instead, all those pods should be accessible through a
single IP address.

To solve these problems, Kubernetes also provides another resource type—Services—
that we’ll discuss in this chapter.

Introducing services

A Kubernetes Service is a resource you create to make a single, constant point of
entry to a group of pods providing the same service. Each service has an IP address
and port that never change while the service exists. Clients can open connections to
that IP and port, and those connections are then routed to one of the pods backing
that service. This way, clients of a service don’t need to know the location of individ-
ual pods providing the service, allowing those pods to be moved around the cluster
at any time.

EXPLAINING SERVICES WITH AN EXAMPLE

Let’s revisit the example where you have a frontend web server and a backend data-
base server. There may be multiple pods that all act as the frontend, but there may
only be a single backend database pod. You need to solve two problems to make the
system function:

External clients need to connect to the frontend pods without caring if there’s
only a single web server or hundreds.
The frontend pods need to connect to the backend database. Because the data-
base runs inside a pod, it may be moved around the cluster over time, causing
its IP address to change. You don’t want to reconfigure the frontend pods every
time the backend database is moved.

By creating a service for the frontend pods and configuring it to be accessible from
outside the cluster, you expose a single, constant IP address through which external
clients can connect to the pods. Similarly, by also creating a service for the backend
pod, you create a stable address for the backend pod. The service address doesn’t



122

511

CHAPTER 5  Services: enabling clients to discover and talk to pods

change even if the pod’s IP address changes. Additionally, by creating the service, you
also enable the frontend pods to easily find the backend service by its name through
either environment variables or DNS. All the components of your system (the two ser-
vices, the two sets of pods backing those services, and the interdependencies between
them) are shown in figure 5.1.

Frontend components

Frontend service

External client \;:1 1.1

{ 3

Frontend pod 1 Frontend pod 2 Frontend pod 3
IP:2.1.1.1 IP:2.1.1.2 IP:2.1.1.3

Backend components

Backend service
IP:1.1.1.2

Backend pod
IP:2.1.1.4

Figure 5.1 Both internal and external clients usually connect to pods through services.

You now understand the basic idea behind services. Now, let’s dig deeper by first see-
ing how they can be created.

Creating services

As you’ve seen, a service can be backed by more than one pod. Connections to the ser-
vice are load-balanced across all the backing pods. But how exactly do you define
which pods are part of the service and which aren’t?

You probably remember label selectors and how they’re used in Replication-
Controllers and other pod controllers to specify which pods belong to the same set.
The same mechanism is used by services in the same way, as you can see in figure 5.2.

In the previous chapter, you created a ReplicationController which then ran three
instances of the pod containing the Node.js app. Create the ReplicationController
again and verify three pod instances are up and running. After that, you'll create a
Service for those three pods.



Introducing services 123

Service: kubia

Client Selector: app=kubia

; app: kubia |

Pod: kubia-53thy
@

; app: kubia |

—»| Pod: kubia-kOxz6

Pod: kubia-q3vkg

Figure 5.2 Label selectors
determine which pods belong
@ to the Service.

CREATING A SERVICE THROUGH KUBECTL EXPOSE
The easiest way to create a service is through kubectl expose, which you’ve already
used in chapter 2 to expose the ReplicationController you created earlier. The
expose command created a Service resource with the same pod selector as the one
used by the ReplicationController, thereby exposing all its pods through a single IP
address and port.

Now, instead of using the expose command, you’ll create a service manually by
posting a YAML to the Kubernetes API server.

CREATING A SERVICE THROUGH A YAML DESCRIPTOR
Create a file called kubia-svc.yaml with the following listing’s contents.

Listing 5.1 A definition of a service: kubia-svc.yaml

apiversion: vl

kind: Service The port this service

metadata: will be available on
name: kubia

spec:

The container port the

ports: service will forward to

- port: 80
targetPort: 8080

selector: All pods with the app=kubia
app: kubia label will be part of this service.

You’re defining a service called kubia, which will accept connections on port 80 and
route each connection to port 8080 of one of the pods matching the app=kubia
label selector.

Go ahead and create the service by posting the file using kubectl create.



124

CHAPTER 5  Services: enabling clients to discover and talk to pods

EXAMINING YOUR NEW SERVICE
After posting the YAML, you can list all Service resources in your namespace and see
that an internal cluster IP has been assigned to your service:

$ kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP  PORT(S) AGE ,
kubernetes 10.111.240.1 <none> 443/TCP 30d HerﬁsY°“r
kubia 10.111.249.153  <none> 80/TCP 6m <»J service.

The list shows that the IP address assigned to the service is 10.111.249.153. Because
this is the cluster IP, it’s only accessible from inside the cluster. The primary purpose
of services is exposing groups of pods to other pods in the cluster, but you'll usually
also want to expose services externally. You’ll see how to do that later. For now, let’s
use your service from inside the cluster and see what it does.

TESTING YOUR SERVICE FROM WITHIN THE CLUSTER
You can send requests to your service from within the cluster in a few ways:

The obvious way is to create a pod that will send the request to the service’s
cluster IP and log the response. You can then examine the pod’s log to see
what the service’s response was.

You can ssh into one of the Kubernetes nodes and use the curl command.
You can execute the curl command inside one of your existing pods through
the kubectl exec command.

Let’s go for the last option, so you also learn how to run commands in existing pods.

REMOTELY EXECUTING COMMANDS IN RUNNING CONTAINERS

The kubectl exec command allows you to remotely run arbitrary commands inside
an existing container of a pod. This comes in handy when you want to examine the
contents, state, and/or environment of a container. List the pods with the kubectl
get pods command and choose one as your target for the exec command (in the fol-
lowing example, I’'ve chosen the kubia-7nogl pod as the target). You’ll also need to
obtain the cluster IP of your service (using kubectl get svc, for example). When run-
ning the following commands yourself, be sure to replace the pod name and the ser-
vice IP with your own:

$ kubectl exec kubia-7nogl -- curl -s http://10.111.249.153
You’ve hit kubia-gzwli

If you’ve used ssh to execute commands on a remote system before, you’ll recognize
that kubectl exec isn’t much different.



Introducing services 125

Why the double dash?

The double dash (--) in the command signals the end of command options for
kubectl. Everything after the double dash is the command that should be executed
inside the pod. Using the double dash isn’t necessary if the command has no
arguments that start with a dash. But in your case, if you don’t use the double dash
there, the -s option would be interpreted as an option for kubectl exec and would
result in the following strange and highly misleading error:

$ kubectl exec kubia-7nogl curl -s http://10.111.249.153
The connection to the server 10.111.249.153 was refused - did you
specify the right host or port?

This has nothing to do with your service refusing the connection. It's because
kubectl is not able to connect to an API server at 10.111.249.153 (the -s option
is used to tell kubectl to connect to a different API server than the default).

Let’s go over what transpired when you ran the command. Figure 5.3 shows the
sequence of events. You instructed Kubernetes to execute the curl command inside the
container of one of your pods. Curl sent an HTTP request to the service IP, which is
backed by three pods. The Kubernetes service proxy intercepted the connection,
selected a random pod among the three pods, and forwarded the request to it. Node.js
running inside that pod then handled the request and returned an HTTP response con-
taining the pod’s name. Curl then printed the response to the standard output, which
was intercepted and printed to its standard output on your local machine by kubect1.

4. Service redirects HTTP
Curl sends HTTP Service: kubia connection to a randomly
GET request 10.111.249.153:80 selected pod

w

\
'
|
|

Y Y
e N e
Pod: kubia-7nog1 Pod: kubia-5fje3 Pod: kubia-gzwli

,
i
|
|

2. Curl is executed
inside the container Container Container Container
running node.js

node.js node.js node.js

1. kubectl exec

curl http://
10.111.249.153

o J o J o J
AN J
6. The output of the 5. HTTP response is
curl command is sent sent back to curl
back to kubectl and

printed by it

Figure 5.3 Using kubectl exec to test out a connection to the service by running curl in one of the pods



126

CHAPTER 5  Services: enabling clients to discover and talk to pods

In the previous example, you executed the curl command as a separate process, but
inside the pod’s main container. This isn’t much different from the actual main pro-
cess in the container talking to the service.

CONFIGURING SESSION AFFINITY ON THE SERVICE
If you execute the same command a few more times, you should hit a different pod
with every invocation, because the service proxy normally forwards each connection
to a randomly selected backing pod, even if the connections are coming from the
same client.

If, on the other hand, you want all requests made by a certain client to be redi-
rected to the same pod every time, you can set the service’s sessionAffinity property
to ClientIP (instead of None, which is the default), as shown in the following listing.

Listing 5.2 A example of a service with ClientIP session affinity configured

apivVersion: vl
kind: Service
spec:
sessionAffinity: ClientIP

This makes the service proxy redirect all requests originating from the same client IP
to the same pod. As an exercise, you can create an additional service with session affin-
ity set to ClientIP and try sending requests to it.

Kubernetes supports only two types of service session affinity: None and ClientIP.
You may be surprised it doesn’t have a cookie-based session affinity option, but you
need to understand that Kubernetes services don’t operate at the HTTP level. Services
deal with TCP and UDP packets and don’t care about the payload they carry. Because
cookies are a construct of the HTTP protocol, services don’t know about them, which
explains why session affinity cannot be based on cookies.

EXPOSING MULTIPLE PORTS IN THE SAME SERVICE

Your service exposes only a single port, but services can also support multiple ports. For
example, if your pods listened on two ports—let’s say 8080 for HITP and 8443 for
HTTPS—you could use a single service to forward both port 80 and 443 to the pod’s
ports 8080 and 8443. You don’t need to create two different services in such cases. Using
a single, multi-port service exposes all the service’s ports through a single cluster IP.

NOTE When creating a service with multiple ports, you must specify a name
for each port.

The spec for a multi-port service is shown in the following listing.

Listing 5.3 Specifying multiple ports in a service definition

apiVersion: vl

kind: Service

metadata:
name: kubia



Introducing services 127

spec:
ports:
- name: http .
port: 80 Port 80 is mapped to

the pods’ port 8080.
targetPort: 8080

Port 443 is mapped to

- name: https
: 44
port 3 pods’ port 8443.
targetPort: 8443
selector: ‘ The label selector always
app: kubia applies to the whole service.

NOTE The label selector applies to the service as a whole—it can’t be config-
ured for each port individually. If you want different ports to map to different
subsets of pods, you need to create two services.

Because your kubia pods don’t listen on multiple ports, creating a multi-port service
and a multi-port pod is left as an exercise to you.

USING NAMED PORTS
In all these examples, you’ve referred to the target port by its number, but you can also
give a name to each pod’s port and refer to it by name in the service spec. This makes
the service spec slightly clearer, especially if the port numbers aren’t well-known.

For example, suppose your pod defines names for its ports as shown in the follow-
ing listing.

Listing 5.4 Specifying port names in a pod definition

kind: Pod
spec:
containers:
- name: kubia
ports:
- name: http ‘ Container’s port
containerPort: 8080 8080 is called http
- name: https .
containerpPort: 8443 ‘ Port 8443 is called https.

You can then refer to those ports by name in the service spec, as shown in the follow-
ing listing.

Listing 5.5 Referring to named ports in a service

apiversion: vl
kind: Service

spec:
ports:
N : htt .
nz:i . 80 P Port 80 is mapped to the
port: container’s port called http.
targetPort: http

- name: https
port: 443
targetPort: https

Port 443 is mapped to the container’s
port, whose name is https.




128

5.1.2

CHAPTER 5  Services: enabling clients to discover and talk to pods

But why should you even bother with naming ports? The biggest benefit of doing so is
that it enables you to change port numbers later without having to change the service
spec. Your pod currently uses port 8080 for http, but what if you later decide you’d
like to move that to port 807

If you’re using named ports, all you need to do is change the port number in the
pod spec (while keeping the port’s name unchanged). As you spin up pods with the
new ports, client connections will be forwarded to the appropriate port numbers,
depending on the pod receiving the connection (port 8080 on old pods and port 80
on the new ones).

Discovering services

By creating a service, you now have a single and stable IP address and port that you
can hit to access your pods. This address will remain unchanged throughout the
whole lifetime of the service. Pods behind this service may come and go, their IPs may
change, their number can go up or down, but they’ll always be accessible through the
service’s single and constant IP address.

But how do the client pods know the IP and port of a service? Do you need to cre-
ate the service first, then manually look up its IP address and pass the IP to the config-
uration options of the client pod? Not really. Kubernetes also provides ways for client
pods to discover a service’s IP and port.

DISCOVERING SERVICES THROUGH ENVIRONMENT VARIABLES

When a pod is started, Kubernetes initializes a set of environment variables pointing
to each service that exists at that moment. If you create the service before creating the
client pods, processes in those pods can get the IP address and port of the service by
inspecting their environment variables.

Let’s see what those environment variables look like by examining the environment
of one of your running pods. You've already learned that you can use the kubectl exec
command to run a command in the pod, but because you created the service only
after your pods had been created, the environment variables for the service couldn’t
have been set yet. You’ll need to address that first.

Before you can see environment variables for your service, you first need to delete
all the pods and let the ReplicationController create new ones. You may remember
you can delete all pods without specifying their names like this:

$ kubectl delete po --all
pod "kubia-7nogl" deleted
pod "kubia-bf50t" deleted
pod "kubia-gzwli" deleted

Now you can list the new pods (I’'m sure you know how to do that) and pick one as
your target for the kubectl exec command. Once you've selected your target pod,
you can list environment variables by running the env command inside the container,
as shown in the following listing.



Introducing services 129

Listing 5.6 Service-related environment variables in a container

$ kubectl exec kubia-3inly env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=kubia-3inly

KUBERNETES_SERVICE HOST=10.111.240.1

t
KUBERNETES SERVICE PORT=443 Here’s the cluster

IP of the service.

KUBIA SERVICE HOST=10.111.249.153

And here’s the port the
KUBIA SERVICE PORT=80

service is available on.

Two services are defined in your cluster: the kubernetes and the kubia service (you
saw this earlier with the kubectl get svc command); consequently, two sets of service-
related environment variables are in the list. Among the variables that pertain to the
kubia service you created at the beginning of the chapter, you’ll see the KUBIA_ SERVICE
_HOST and the KUBIA SERVICE PORT environment variables, which hold the IP address
and port of the kubia service, respectively.

Turning back to the frontend-backend example we started this chapter with, when
you have a frontend pod that requires the use of a backend database server pod, you
can expose the backend pod through a service called backend-database and then
have the frontend pod look up its IP address and port through the environment vari-
ables BACKEND DATABASE SERVICE HOST and BACKEND DATABASE SERVICE PORT.

NOTE Dashes in the service name are converted to underscores and all let-
ters are uppercased when the service name is used as the prefix in the envi-
ronment variable’s name.

Environment variables are one way of looking up the IP and port of a service, but isn’t
this usually the domain of DNS? Why doesn’t Kubernetes include a DNS server and
allow you to look up service IPs through DNS instead? As it turns out, it does!

DISCOVERING SERVICES THROUGH DNS

Remember in chapter 3 when you listed pods in the kube-system namespace? One of
the pods was called kube-dns. The kube-system namespace also includes a corre-
sponding service with the same name.

As the name suggests, the pod runs a DNS server, which all other pods running in
the cluster are automatically configured to use (Kubernetes does that by modifying
each container’s /etc/resolv. conf file). Any DNS query performed by a process run-
ning in a pod will be handled by Kubernetes’ own DNS server, which knows all the ser-
vices running in your system.

NOTE Whether a pod uses the internal DNS server or not is configurable
through the dnsPolicy property in each pod’s spec.

Each service gets a DNS entry in the internal DNS server, and client pods that know
the name of the service can access it through its fully qualified domain name (FQDN)
instead of resorting to environment variables.



130

CHAPTER 5  Services: enabling clients to discover and talk to pods

CONNECTING TO THE SERVICE THROUGH ITS FQDN
To revisit the frontend-backend example, a frontend pod can connect to the backend-
database service by opening a connection to the following FQDN:

backend-database.default.svc.cluster.local

backend-database corresponds to the service name, default stands for the name-
space the service is defined in, and svc.cluster.local is a configurable cluster
domain suffix used in all cluster local service names.

NOTE The client must still know the service’s port number. If the service is
using a standard port (for example, 80 for HTTP or 5432 for Postgres), that
shouldn’t be a problem. If not, the client can get the port number from the
environment variable.

Connecting to a service can be even simpler than that. You can omit the svc.cluster
.local suffix and even the namespace, when the frontend pod is in the same name-
space as the database pod. You can thus refer to the service simply as backend-
database. That’s incredibly simple, right?

Let’s try this. You’ll try to access the kubia service through its FQDN instead of its
IP. Again, you’ll need to do that inside an existing pod. You already know how to use
kubectl exec to run a single command in a pod’s container, but this time, instead of
running the curl command directly, you’ll run the bash shell instead, so you can then
run multiple commands in the container. This is similar to what you did in chapter 2
when you entered the container you ran with Docker by using the docker exec -it
bash command.

RUNNING A SHELL IN A POD’S CONTAINER

You can use the kubectl exec command to run bash (or any other shell) inside a
pod’s container. This way you're free to explore the container as long as you want,
without having to perform a kubectl exec for every command you want to run.

NOTE The shell’s binary executable must be available in the container image
for this to work.

To use the shell properly, you need to pass the -it option to kubectl exec:

$ kubectl exec -it kubia-3inly bash
root@kubia-3inly:/#

You’re now inside the container. You can use the curl command to access the kubia
service in any of the following ways:

root@kubia-3inly:/# curl http://kubia.default.svc.cluster.local
You’ve hit kubia-5asi2

root@kubia-3inly:/# curl http://kubia.default
You’ve hit kubia-3inly



5.2

5.21

Connecting to services living outside the cluster 131

root@kubia-3inly:/# curl http://kubia
You’ve hit kubia-8awf3

You can hit your service by using the service’s name as the hostname in the requested
URL. You can omit the namespace and the svc.cluster.local suffix because of how
the DNS resolver inside each pod’s container is configured. Look at the /etc/resolv.conf
file in the container and you’ll understand:

root@kubia-3inly:/# cat /etc/resolv.conf
search default.svc.cluster.local svc.cluster.local cluster.local

UNDERSTANDING WHY YOU CAN’T PING A SERVICE IP

One last thing before we move on. You know how to create services now, so you’ll soon

create your own. But what if, for whatever reason, you can’t access your service?
You’ll probably try to figure out what’s wrong by entering an existing pod and try-

ing to access the service like you did in the last example. Then, if you still can’t access

the service with a simple curl command, maybe you’ll try to ping the service IP to see

if it’s up. Let’s try that now:

root@kubia-3inly:/# ping kubia

PING kubia.default.svc.cluster.local (10.111.249.153): 56 data bytes
“C--- kubia.default.svc.cluster.local ping statistics ---

54 packets transmitted, 0 packets received, 100% packet loss

Hmm. curl-ing the service works, but pinging it doesn’t. That’s because the service’s
cluster IP is a virtual IP, and only has meaning when combined with the service port.
We’ll explain what that means and how services work in chapter 11. I wanted to men-
tion that here because it’s the first thing users do when they try to debug a broken
service and it catches most of them off guard.

Connecting to services living outside the cluster

Up to now, we’ve talked about services backed by one or more pods running inside
the cluster. But cases exist when you’d like to expose external services through the
Kubernetes services feature. Instead of having the service redirect connections to
pods in the cluster, you want it to redirect to external IP(s) and port(s).

This allows you to take advantage of both service load balancing and service discov-
ery. Client pods running in the cluster can connect to the external service like they
connect to internal services.

Introducing service endpoints

Before going into how to do this, let me first shed more light on services. Services
don’t link to pods directly. Instead, a resource sits in between—the Endpoints
resource. You may have already noticed endpoints if you used the kubectl describe
command on your service, as shown in the following listing.



132

5.2.2

CHAPTER 5  Services: enabling clients to discover and talk to pods

Listing 5.7 Full details of a service displayed with kubectl describe

$ kubectl describe svc kubia

Name : kubia The service’s pod

Namespace : default selector is used to The list of pod
Labels: <nones> create the list of IPes :n d° tl::ts
Selector: app=kubia endpoints. that reprzsent
Type: ClusterIP the endpoints of
IP: 10.111.249.153 this service
Port: <unset> 80/TCP

Endpoints: 10.108.1.4:8080,10.108.2.5:8080,10.108.2.6:8080
Session Affinity: None

No events.

An Endpoints resource (yes, plural) is a list of IP addresses and ports exposing a ser-
vice. The Endpoints resource is like any other Kubernetes resource, so you can display
its basic info with kubectl get:

$ kubectl get endpoints kubia

NAME ENDPOINTS AGE
kubia 10.108.1.4:8080,10.108.2.5:8080,10.108.2.6:8080 1h

Although the pod selector is defined in the service spec, it’s not used directly when
redirecting incoming connections. Instead, the selector is used to build a list of IPs
and ports, which is then stored in the Endpoints resource. When a client connects to a
service, the service proxy selects one of those IP and port pairs and redirects the
incoming connection to the server listening at that location.

Manually configuring service endpoints

You may have probably realized this already, but having the service’s endpoints decou-
pled from the service allows them to be configured and updated manually.

If you create a service without a pod selector, Kubernetes won’t even create the
Endpoints resource (after all, without a selector, it can’t know which pods to include
in the service). It’s up to you to create the Endpoints resource to specify the list of
endpoints for the service.

To create a service with manually managed endpoints, you need to create both a
Service and an Endpoints resource.

CREATING A SERVICE WITHOUT A SELECTOR
You'll first create the YAML for the service itself, as shown in the following listing.

Listing 5.8 A service without a pod selector: external-service.yaml

apiVersion: vl

kind: Service The name of the service must

match the name of the Endpoints

metadata: . . .
. object (see next listing).
name: external-service
Spec: This service has no
ports: selector defined.

- port: 80



Connecting to services living outside the cluster 133

You're defining a service called external-service that will accept incoming connec-
tions on port 80. You didn’t define a pod selector for the service.

CREATING AN ENDPOINTS RESOURCE FOR A SERVICE WITHOUT A SELECTOR

Endpoints are a separate resource and not an attribute of a service. Because you cre-
ated the service without a selector, the corresponding Endpoints resource hasn’t been
created automatically, so it’s up to you to create it. The following listing shows its
YAML manifest.

Listing 5.9 A manually created Endpoints resource: external-service-endpoints.yaml

apivVersion: vl X X
kind: Endpoints The name of the Endpoints object
must match the name of the

metadata: . . . e
name: external-service service (see previous listing).
subsets:
- addresses:
- ip: 11.11.11.11 The IPs of the endpoints that the
- ip: 22.22.22.22 service will forward connections to
ports:
- port: 80 <+ The target port of the endpoints

The Endpoints object needs to have the same name as the service and contain the list
of target IP addresses and ports for the service. After both the Service and the End-
points resource are posted to the server, the service is ready to be used like any regular
service with a pod selector. Containers created after the service is created will include
the environment variables for the service, and all connections to its IP:port pair will be
load balanced between the service’s endpoints.

Figure 5.4 shows three pods connecting to the service with external endpoints.

External server 1
IP: 11.11.11.11:80

External server 2
IP: 22.22.22.22:80

Service
10.111.249.214:80

Kubernetes cluster

Internet

Figure 5.4 Pods consuming a service with two external endpoints.

If you later decide to migrate the external service to pods running inside Kubernetes,
you can add a selector to the service, thereby making its Endpoints managed automat-
ically. The same is also true in reverse—by removing the selector from a Service,



134

5.23

5.3

CHAPTER 5  Services: enabling clients to discover and talk to pods

Kubernetes stops updating its Endpoints. This means a service IP address can remain
constant while the actual implementation of the service is changed.

Creating an alias for an external service

Instead of exposing an external service by manually configuring the service’s End-
points, a simpler method allows you to refer to an external service by its fully qualified
domain name (FQDN).

CREATING AN EXTERNALNAME SERVICE

To create a service that serves as an alias for an external service, you create a Service
resource with the type field set to ExternalName. For example, let’s imagine there’s a
public APT available at api.somecompany.com. You can define a service that points to
it as shown in the following listing.

Listing 5.10 An ExternalName-type service: external-service-externalname.yaml

apiversion: vl

kind: Service . .
Service type is set

metadata:
to ExternalName

name: external-service

Spi;)e: et ornallame QJ The fully qualified domain
externalName: someapi.somecompany.com name of the actual service
ports:

- port: 80

After the service is created, pods can connect to the external service through the
external-service.default.svc.cluster.local domain name (or even external-
service) instead of using the service’s actual FQDN. This hides the actual service
name and its location from pods consuming the service, allowing you to modify the
service definition and point it to a different service any time later, by only changing
the externalName attribute or by changing the type back to ClusterIP and creating
an Endpoints object for the service—either manually or by specifying a label selector
on the service and having it created automatically.

ExternalName services are implemented solely at the DNS level—a simple CNAME
DNS record is created for the service. Therefore, clients connecting to the service will
connect to the external service directly, bypassing the service proxy completely. For
this reason, these types of services don’t even get a cluster IP.

NOTE A CNAME record points to a fully qualified domain name instead of a
numeric IP address.

Exposing services to external clients

Up to now, we’ve only talked about how services can be consumed by pods from inside
the cluster. But you’ll also want to expose certain services, such as frontend webserv-
ers, to the outside, so external clients can access them, as depicted in figure 5.5.


http://api.somecompany.com

53.1

Exposing services to external clients 135

External client \_/S\en/ice
{ 3
(e [ e [ e ]

Kubernetes cluster

Figure 5.5 Exposing a service to external clients

You have a few ways to make a service accessible externally:

Setting the service type to NodePort—For a NodePort service, each cluster node
opens a port on the node itself (hence the name) and redirects traffic received
on that port to the underlying service. The service isn’t accessible only at the
internal cluster IP and port, but also through a dedicated port on all nodes.
Setting the service lype to LoadBalancer, an extension of the NodePort lype—This
makes the service accessible through a dedicated load balancer, provisioned
from the cloud infrastructure Kubernetes is running on. The load balancer redi-
rects traffic to the node port across all the nodes. Clients connect to the service
through the load balancer’s IP.

Creating an Ingress resource, a radically different mechanism for exposing multiple ser-
vices through a single IP address—It operates at the HTTP level (network layer 7)
and can thus offer more features than layer 4 services can. We’ll explain Ingress
resources in section 5.4.

Using a NodePort service

The first method of exposing a set of pods to external clients is by creating a service
and setting its type to NodePort. By creating a NodePort service, you make Kubernetes
reserve a port on all its nodes (the same port number is used across all of them) and
forward incoming connections to the pods that are part of the service.

This is similar to a regular service (their actual type is ClusterIP), but a NodePort
service can be accessed not only through the service’s internal cluster IP, but also
through any node’s IP and the reserved node port.

This will make more sense when you try interacting with a NodePort service.

CREATING A NODEPORT SERVICE

You’ll now create a NodePort service to see how you can use it. The following listing
shows the YAML for the service.



136

CHAPTER 5  Services: enabling clients to discover and talk to pods

Listing 5.11 A NodePort service definition: kubia-svc-nodeport.yaml

apiVersion: vl Set the service

kind: Service type to NodePort.
metadata:

name: kubia-nodeport Thhistheportofthe

pec: service’s internal cluster IP.
type: NodePort
ports: .
- port: 80 q—‘ This is the target port
targetPort: 8080 of the backing pods.

nodePort: 30123 The service will be accessible
selector: _ through port 30123 of each of
app: kubia your cluster nodes.

You set the type to NodePort and specify the node port this service should be bound to
across all cluster nodes. Specifying the port isn’t mandatory; Kubernetes will choose a
random port if you omit it.

NOTE When you create the service in GKE, kubectl prints out a warning
about having to configure firewall rules. We’ll see how to do that soon.

EXAMINING YOUR NODEPORT SERVICE
Let’s see the basic information of your service to learn more about it:

$ kubectl get svc kubia-nodeport
NAME CLUSTER-1IP EXTERNAL-IP PORT (S) AGE
kubia-nodeport 10.111.254.223 <nodes> 80:30123/TCP 2m

Look at the EXTERNAL-IP column. It shows <nodes>, indicating the service is accessible
through the IP address of any cluster node. The PORT(S) column shows both the
internal port of the cluster IP (80) and the node port (30123). The service is accessi-
ble at the following addresses:

= 10.11.254.223:80
" <lstnode’s IP>:30123
" <2nd node’s IP>:30123, and so on.

Figure 5.6 shows your service exposed on port 30123 of both of your cluster nodes
(this applies if you’re running this on GKE; Minikube only has a single node, but the
principle is the same). An incoming connection to one of those ports will be redi-
rected to a randomly selected pod, which may or may not be the one running on the
node the connection is being made to.



Exposing services to external clients 137

External client 4)

Ll l

. L
Port 30123 Port 30123
L~ N~ Y
d:f:\/\i Service
4

Port 8080 Port 8080

Port 8080

Node 1 Node 2
IP: 130.211.97.55 IP: 130.211.99.206

Kubernetes cluster

Figure 5.6 An external client connecting to a NodePort service either through Node 1 or 2

A connection received on port 30123 of the first node might be forwarded either to
the pod running on the first node or to one of the pods running on the second node.

CHANGING FIREWALL RULES TO LET EXTERNAL CLIENTS ACCESS OUR NODEPORT SERVICE

As I've mentioned previously, before you can access your service through the node
port, you need to configure the Google Cloud Platform’s firewalls to allow external
connections to your nodes on that port. You’ll do this now:

$ gcloud compute firewall-rules create kubia-svc-rule --allow=tcp:30123

Created [https://www.googleapis.com/compute/vl/projects/kubia-
1295/global/firewalls/kubia-svc-rule] .

NAME NETWORK SRC_RANGES RULES SRC_TAGS TARGET_TAGS

kubia-svc-rule default 0.0.0.0/0 tcp:30123

You can access your service through port 30123 of one of the node’s IPs. But you need
to figure out the IP of a node first. Refer to the sidebar on how to do that.



138

5.3.2

CHAPTER 5  Services: enabling clients to discover and talk to pods

Using JSONPath to get the IPs of all your nodes

You can find the IP in the JSON or YAML descriptors of the nodes. But instead of
sifting through the relatively large JSON, you can tell kubectl to print out only the
node IP instead of the whole service definition:

$ kubectl get nodes -o jsonpath='{.items[*].status.
addresses[? (@.type=="ExternalIP")] .address}"'
130.211.97.55 130.211.99.206

You're telling kubectl to only output the information you want by specifying a
JSONPath. You're probably familiar with XPath and how it’s used with XML. JSONPath
is basically XPath for JSON. The JSONPath in the previous example instructs kubect1
to do the following:

Go through all the elements in the items attribute.

For each element, enter the status attribute.

Filter elements of the addresses attribute, taking only those that have the
type attribute set to ExternallIP.

Finally, print the address attribute of the filtered elements.

To learn more about how to use JSONPath with kubect1l, refer to the documentation
at http://kubernetes.io/docs/user-guide/jsonpath.

Once you know the IPs of your nodes, you can try accessing your service through them:

$ curl http://130.211.97.55:30123
You've hit kubia-ym8or
$ curl http://130.211.99.206:30123
You've hit kubia-xueqgl

TIP  When using Minikube, you can easily access your NodePort services
through your browser by running minikube service <service-name> [-n
<namespaces>].

As you can see, your pods are now accessible to the whole internet through port 30123
on any of your nodes. It doesn’t matter what node a client sends the request to. But if
you only point your clients to the first node, when that node fails, your clients can’t
access the service anymore. That’s why it makes sense to put a load balancer in front
of the nodes to make sure you're spreading requests across all healthy nodes and
never sending them to a node that’s offline at that moment.

If your Kubernetes cluster supports it (which is mostly true when Kubernetes is
deployed on cloud infrastructure), the load balancer can be provisioned automati-
cally by creating a LoadBalancer instead of a NodePort service. We’ll look at this next.

Exposing a service through an external load balancer

Kubernetes clusters running on cloud providers usually support the automatic provi-
sion of a load balancer from the cloud infrastructure. All you need to do is set the


http://kubernetes.io/docs/user-guide/jsonpath

Exposing services to external clients 139

service’s type to LoadBalancer instead of NodePort. The load balancer will have its
own unique, publicly accessible IP address and will redirect all connections to your
service. You can thus access your service through the load balancer’s IP address.

If Kubernetes is running in an environment that doesn’t support LoadBalancer
services, the load balancer will not be provisioned, but the service will still behave like
a NodePort service. That’s because a LoadBalancer service is an extension of a Node-
Port service. You’ll run this example on Google Kubernetes Engine, which supports
LoadBalancer services. Minikube doesn’t, at least not as of this writing.

CREATING A LOADBALANCER SERVICE
To create a service with a load balancer in front, create the service from the following
YAML manifest, as shown in the following listing.

Listing 5.12 A LoadBalancer-type service: kubia-svc-loadbalancer.yaml

apiVersion: vl
kind: Service

metadata:
name: kubia-loadbalancer This type of service obtains
spec: a load balancer from the
type: LoadBalancer infrastructure hosting the
ports: Kubernetes cluster.
- port: 80
targetPort: 8080
selector:
app: kubia

The service type is set to LoadBalancer instead of NodePort. You're not specifying a spe-
cific node port, although you could (you’re letting Kubernetes choose one instead).

CONNECTING TO THE SERVICE THROUGH THE LOAD BALANCER

After you create the service, it takes time for the cloud infrastructure to create the
load balancer and write its IP address into the Service object. Once it does that, the IP
address will be listed as the external IP address of your service:

$ kubectl get svc kubia-loadbalancer
NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
kubia-loadbalancer 10.111.241.153 130.211.53.173 80:32143/TCP im

In this case, the load balancer is available at IP 130.211.53.173, so you can now access
the service at that IP address:

$ curl http://130.211.53.173
You've hit kubia-xueqgl

Success! As you may have noticed, this time you didn’t need to mess with firewalls the
way you had to before with the NodePort service.



140 CHAPTER 5  Services: enabling clients to discover and talk to pods

Session affinity and web browsers

Because your service is now exposed externally, you may try accessing it with your
web browser. You'll see something that may strike you as odd—the browser will hit
the exact same pod every time. Did the service’s session affinity change in the
meantime? With kubectl explain, you can double-check that the service’s session
affinity is still set to None, so why don’t different browser requests hit different
pods, as is the case when using curl?

Let me explain what’s happening. The browser is using keep-alive connections and
sends all its requests through a single connection, whereas curl opens a new
connection every time. Services work at the connection level, so when a connection to a
service is first opened, a random pod is selected and then all network packets belonging
to that connection are all sent to that single pod. Even if session affinity is set to None,
users will always hit the same pod (until the connection is closed).

See figure 5.7 to see how HTTP requests are delivered to the pod. External clients
(curl in your case) connect to port 80 of the load balancer and get routed to the

External client

Load balancer

IP: 130.211.53.173:80 I

M) [N
Port 32143 Port 32143
L~~~
C Service

Port 8080 Port 8080

Port 8080

Node 1 Node 2
IP: 130.211.97.55 IP: 130.211.99.206

Kubernetes cluster

Figure 5.7 An external client connecting to a LoadBalancer service



5.3.3

Exposing services to external clients 141

implicitly assigned node port on one of the nodes. From there, the connection is for-
warded to one of the pod instances.

As already mentioned, a LoadBalancer-type service is a NodePort service with an
additional infrastructure-provided load balancer. If you use kubectl describe to dis-
play additional info about the service, you'll see that a node port has been selected for
the service. If you were to open the firewall for this port, the way you did in the previ-
ous section about NodePort services, you could access the service through the node
IPs as well.

TIP  If you're using Minikube, even though the load balancer will never be
provisioned, you can still access the service through the node port (at the
Minikube VM’s IP address).

Understanding the peculiarities of external connections

You must be aware of several things related to externally originating connections to
services.

UNDERSTANDING AND PREVENTING UNNECESSARY NETWORK HOPS
When an external client connects to a service through the node port (this also
includes cases when it goes through the load balancer first), the randomly chosen
pod may or may not be running on the same node that received the connection. An
additional network hop is required to reach the pod, but this may not always be
desirable.

You can prevent this additional hop by configuring the service to redirect external
traffic only to pods running on the node that received the connection. This is done by
setting the externalTrafficPolicy field in the service’s spec section:

spec:
externalTrafficPolicy: Local

If a service definition includes this setting and an external connection is opened
through the service’s node port, the service proxy will choose a locally running pod. If
no local pods exist, the connection will hang (it won’t be forwarded to a random
global pod, the way connections are when not using the annotation). You therefore
need to ensure the load balancer forwards connections only to nodes that have at
least one such pod.

Using this annotation also has other drawbacks. Normally, connections are spread
evenly across all the pods, but when using this annotation, that’s no longer the case.

Imagine having two nodes and three pods. Let’s say node A runs one pod and
node B runs the other two. If the load balancer spreads connections evenly across the
two nodes, the pod on node A will receive 50% of all connections, but the two pods on
node B will only receive 25% each, as shown in figure 5.8.



142

5.4

CHAPTER 5  Services: enabling clients to discover and talk to pods

Load balancer

50% l 50%
50% 25% 25%
Pod [ Pod ] [ Pod ] Figure 5.8 A Service using
the Local external traffic
Node A Node B pollcy.ma.y Ie:ad to uneven
load distribution across pods.

BEING AWARE OF THE NON-PRESERVATION OF THE CLIENT’S IP

Usually, when clients inside the cluster connect to a service, the pods backing the ser-
vice can obtain the client’s IP address. But when the connection is received through a
node port, the packets’ source IP is changed, because Source Network Address Trans-
lation (SNAT) is performed on the packets.

The backing pod can’t see the actual client’s IP, which may be a problem for some
applications that need to know the client’s IP. In the case of a web server, for example,
this means the access log won’t show the browser’s IP.

The Local external traffic policy described in the previous section affects the pres-
ervation of the client’s IP, because there’s no additional hop between the node receiv-
ing the connection and the node hosting the target pod (SNAT isn’t performed).

Exposing services externally through an Ingress
resource

You’ve now seen two ways of exposing a service to clients outside the cluster, but
another method exists—creating an Ingress resource.

DEFINITION Ingress (noun)—The act of going in or entering; the right to
enter; a means or place of entering; entryway.

Let me first explain why you need another way to access Kubernetes services from the
outside.

UNDERSTANDING WHY INGRESSES ARE NEEDED

One important reason is that each LoadBalancer service requires its own load bal-
ancer with its own public IP address, whereas an Ingress only requires one, even when
providing access to dozens of services. When a client sends an HTTP request to the
Ingress, the host and path in the request determine which service the request is for-
warded to, as shown in figure 5.9.



Exposing services externally through an Ingress resource 143

kubia.example.com/kubia
- Service —>[ Pod ][ Pod ][ Pod ]
kubia.example.com/foo
L Service —>[ Pod ][ Pod ][ Pod ]
Client | Ingress (<
foo.example.com
Service —>[ Pod J[ Pod J[ Pod J
bar.example.com
Service ——[ Pod ][ Pod ][ Pod ]

Figure 5.9 Multiple services can be exposed through a single Ingress.

Ingresses operate at the application layer of the network stack (HTTP) and can pro-
vide features such as cookie-based session affinity and the like, which services can’t.

UNDERSTANDING THAT AN INGRESS CONTROLLER IS REQUIRED

Before we go into the features an Ingress object provides, let me emphasize that to
make Ingress resources work, an Ingress controller needs to be running in the cluster.
Difterent Kubernetes environments use different implementations of the controller,
but several don’t provide a default controller at all.

For example, Google Kubernetes Engine uses Google Cloud Platform’s own HTTP
load-balancing features to provide the Ingress functionality. Initially, Minikube didn’t
provide a controller out of the box, but it now includes an add-on that can be enabled
to let you try out the Ingress functionality. Follow the instructions in the following
sidebar to ensure it’s enabled.

Enabling the Ingress add-on in Minikube

If you’re using Minikube to run the examples in this book, you'll need to ensure the
Ingress add-on is enabled. You can check whether it is by listing all the add-ons:

$ minikube addons list

- default-storageclass: enabled

- kube-dns: enabled

- heapster: disabled QJ The Ingress add-on
- ingress: disabled isn’t enabled.

- registry-creds: disabled

- addon-manager: enabled

- dashboard: enabled

You'll learn about what these add-ons are throughout the book, but it should be
pretty clear what the dashboard and the kube-dns add-ons do. Enable the Ingress
add-on so you can see Ingresses in action:

$ minikube addons enable ingress
ingress was successfully enabled



144

54.1

CHAPTER 5  Services: enabling clients to discover and talk to pods

(continued)

This should have spun up an Ingress controller as another pod. Most likely, the
controller pod will be in the kube-system hamespace, but not necessarily, so list all
the running pods across all namespaces by using the --all-namespaces option:

$ kubectl get po --all-namespaces

NAMESPACE NAME READY STATUS RESTARTS AGE
default kubia-rsvsm 1/1 Running 0 13h
default kubia-fe4ad 1/1 Running 0 13h
default kubia-ke823 1/1 Running 0 13h
kube-system default-http-backend-5wb0h 1/1 Running 0 18m
kube-system kube-addon-manager-minikube 1/1 Running 3 6d
kube-system kube-dns-v20-101vqg 3/3 Running 9 6d
kube-system kubernetes-dashboard-jxdol 1/1 Running 3 6d
kube-system nginx-ingress-controller-gdts0 1/1 Running 0 18m

At the bottom of the output, you see the Ingress controller pod. The name suggests
that Nginx (an open-source HTTP server and reverse proxy) is used to provide the
Ingress functionality.

TIP The --all-namespaces option mentioned in the sidebar is handy when
you don’t know what namespace your pod (or other type of resource) is in, or
if you want to list resources across all namespaces.

Creating an Ingress resource

You've confirmed there’s an Ingress controller running in your cluster, so you can
now create an Ingress resource. The following listing shows what the YAML manifest
for the Ingress looks like.

Listing 5.13 An Ingress resource definition: kubia-ingress.yaml

apiVersion: extensions/vlbetal
kind: Ingress

metadata:
name: kubia .
spec: This Ingress maps the
ruies ) kubia.example.com domain
- host: kubia.example.com name to your service.
http:
paths:
- path: / All requests will be sent to
backend: port 80 of the kubia-

serviceName: kubia-nodeport nodeport service.
servicePort: 80

This defines an Ingress with a single rule, which makes sure all HTTP requests received
by the Ingress controller, in which the host kubia.example.com is requested, will be
sent to the kubia-nodeport service on port 80.


http://kubia.example.com

542

Exposing services externally through an Ingress resource 145

NOTE Ingress controllers on cloud providers (in GKE, for example) require
the Ingress to point to a NodePort service. But that’s not a requirement of
Kubernetes itself.

Accessing the service through the Ingress

To access your service through http://kubia.example.com, you’ll need to make sure
the domain name resolves to the IP of the Ingress controller.

OBTAINING THE IP ADDRESS OF THE INGRESS
To look up the IP, you need to list Ingresses:
$ kubectl get ingresses

NAME HOSTS ADDRESS PORTS AGE
kubia kubia.example.com 192.168.99.100 80 29m

NOTE When running on cloud providers, the address may take time to appear,
because the Ingress controller provisions a load balancer behind the scenes.

The IP is shown in the ADDRESS column.

ENSURING THE HOST CONFIGURED IN THE INGRESS POINTS TO THE INGRESS’ IP ADDRESS

Once you know the IP, you can then either configure your DNS servers to resolve
kubia.example.com to that IP or you can add the following line to /etc/hosts (or
C:\windows\system32\drivers\etc\hosts on Windows):

192.168.99.100 kubia.example.com

ACCESSING PODS THROUGH THE INGRESS
Everything is now set up, so you can access the service at http://kubia.example.com
(using a browser or curl):

$ curl http://kubia.example.com
You've hit kubia-ke823

You've successfully accessed the service through an Ingress. Let’s take a better look at
how that unfolded.

UNDERSTANDING HOW INGRESSES WORK
Figure 5.10 shows how the client connected to one of the pods through the Ingress
controller. The client first performed a DNS lookup of kubia.example.com, and the
DNS server (or the local operating system) returned the IP of the Ingress controller.
The client then sent an HTTP request to the Ingress controller and specified
kubia.example.comin the Host header. From that header, the controller determined
which service the client is trying to access, looked up the pod IPs through the End-
points object associated with the service, and forwarded the client’s request to one of
the pods.

As you can see, the Ingress controller didn’t forward the request to the service. It
only used it to select a pod. Most, if not all, controllers work like this.


http://kubia.example.com
http://kubia.example.com
http://kubia.example.com
http://kubia.example.com

146 CHAPTER 5  Services: enabling clients to discover and talk to pods
DNS
1. Client looks up Ingress Service Endpoints
kubia.example.com
2. Client sends HTTP GET 3. Controller sends
request with header request to one of
Host: kubia.example.com Ingress the pods.
Client S ~
controller ]
i v
[ Pod ] [ Pod ] [ Pod ]
Node A Node B

Figure 5.10 Accessing pods through an Ingress

543

Exposing multiple services through the same Ingress

If you look at the Ingress spec closely, you’ll see that both rules and paths are arrays,
so they can contain multiple items. An Ingress can map multiple hosts and paths to
multiple services, as you'll see next. Let’s focus on paths first.

MAPPING DIFFERENT SERVICES TO DIFFERENT PATHS OF THE SAME HOST
You can map multiple paths on the same host to different services, as shown in the
following listing.

Listing 5.14 Ingress exposing multiple services on same host, but different paths

- host: kubia.example.com

http:
paths:
- path: /kubia
backend: Requests to kubia.example.com/kubia
serviceName: kubia will be routed to the kubia service.
servicePort: 80
- path: /foo
backend: Requests to kubia.example.com/bar
serviceName: bar will be routed to the bar service.

servicePort: 80

In this case, requests will be sent to two different services, depending on the path in
the requested URL. Clients can therefore reach two different services through a single
IP address (that of the Ingress controller).



5.4.4

Exposing services externally through an Ingress resource 147

MAPPING DIFFERENT SERVICES TO DIFFERENT HOSTS
Similarly, you can use an Ingress to map to different services based on the host in the
HTTP request instead of (only) the path, as shown in the next listing.

Listing 5.15 Ingress exposing multiple services on different hosts

spec:
rules:
- host: foo.example.com <
http:
P Requests for
paths: .
foo.example.com will be
- path: / routed to service foo
backend: :
serviceName: foo <+
servicePort: 80
- host: bar.example.com <
http:
P Requests for
paths: .
bar.example.com will be
- path: / routed to service bar
backend: :
serviceName: bar <—

servicePort: 80

Requests received by the controller will be forwarded to either service foo or bar,
depending on the Host header in the request (the way virtual hosts are handled in
web servers). DNS needs to point both the foo.example.com and the bar.exam-
ple.com domain names to the Ingress controller’s IP address.

Configuring Ingress to handle TLS traffic

You’ve seen how an Ingress forwards HTTP traffic. But what about HTTPS? Let’s take
a quick look at how to configure Ingress to support TLS.

CREATING A TLS CERTIFICATE FOR THE INGRESS
When a client opens a TLS connection to an Ingress controller, the controller termi-
nates the TLS connection. The communication between the client and the controller
is encrypted, whereas the communication between the controller and the backend
pod isn’t. The application running in the pod doesn’t need to support TLS. For exam-
ple, if the pod runs a web server, it can accept only HTTP traffic and let the Ingress
controller take care of everything related to TLS. To enable the controller to do that,
you need to attach a certificate and a private key to the Ingress. The two need to be
stored in a Kubernetes resource called a Secret, which is then referenced in the
Ingress manifest. We’ll explain Secrets in detail in chapter 7. For now, you’ll create the
Secret without paying too much attention to it.

First, you need to create the private key and certificate:
$ openssl genrsa -out tls.key 2048

$ openssl req -new -x509 -key tls.key -out tls.cert -days 360 -subj
/CN=kubia.example.com


http://foo.example.com
http://bar.example.com
http://bar.example.com
http://bar.example.com
http://foo.example.com

148 CHAPTER 5  Services: enabling clients to discover and talk to pods

Then you create the Secret from the two files like this:

$ kubectl create secret tls tls-secret --cert=tls.cert --key=tls.key
secret "tls-secret" created

Signing certificates through the CertificateSigningRequest resource

Instead of signing the certificate ourselves, you can get the certificate signed by
creating a CertificateSigningRequest (CSR) resource. Users or their applications
can create a regular certificate request, put it into a CSR, and then either a human
operator or an automated process can approve the request like this:

$ kubectl certificate approve <name of the CSR>

The signed certificate can then be retrieved from the CSR’s status.certificate
field.

Note that a certificate signer component must be running in the cluster; otherwise
creating CertificateSigningRequest and approving or denying them won’t have
any effect.

The private key and the certificate are now stored in the Secret called tls-secret.
Now, you can update your Ingress object so it will also accept HTTPS requests for
kubia.example.com. The Ingress manifest should now look like the following listing.

Listing 5.16 Ingress handling TLS traffic: kubia-ingress-tls.yaml

apiVersion: extensions/vlbetal
kind: Ingress

metadata: .
name: kubia The whole '!'LS copﬁguratlon
is under this attribute.
spec:
tls:
- hosts: TLS connections will be accepted for
- kubia.example.com the kubia.example.com hostname.
secretName: tls-secret
rules: . .

- host: kubia.example.com The private key. and the certificate
http: should be obtained from the tls-
paths: secret you created previously.

- path: /
backend:

serviceName: kubia-nodeport
servicePort: 80

TIP Instead of deleting the Ingress and re-creating it from the new file, you
can invoke kubectl apply -f kubia-ingress-tls.yaml, which updates the
Ingress resource with what’s specified in the file.


http://kubia.example.com
http://kubia.example.com

5.5

5.5.1

Signaling when a pod is ready to accept connections 149

You can now use HTTPS to access your service through the Ingress:

$ curl -k -v https://kubia.example.com/kubia
* About to connect () to kubia.example.com port 443 (#0)

* Server certificate:
* subject: CN=kubia.example.com

> GET /kubia HTTP/1.1
> ...
You've hit kubia-xueqgl

The command’s output shows the response from the app, as well as the server certifi-
cate you configured the Ingress with.

NOTE Support for Ingress features varies between the different Ingress con-
troller implementations, so check the implementation-specific documenta-
tion to see what’s supported.

Ingresses are a relatively new Kubernetes feature, so you can expect to see many
improvements and new features in the future. Although they currently support only
L7 (HTTP/HTTPS) load balancing, support for L4 load balancing is also planned.

Signaling when a pod is ready to accept connections

There’s one more thing we need to cover regarding both Services and Ingresses.
You've already learned that pods are included as endpoints of a service if their labels
match the service’s pod selector. As soon as a new pod with proper labels is created, it
becomes part of the service and requests start to be redirected to the pod. But what if
the pod isn’t ready to start serving requests immediately?

The pod may need time to load either configuration or data, or it may need to per-
form a warm-up procedure to prevent the first user request from taking too long and
affecting the user experience. In such cases you don’t want the pod to start receiving
requests immediately, especially when the already-running instances can process
requests properly and quickly. It makes sense to not forward requests to a pod that’s in
the process of starting up until it’s fully ready.

Introducing readiness probes

In the previous chapter you learned about liveness probes and how they help keep
your apps healthy by ensuring unhealthy containers are restarted automatically.
Similar to liveness probes, Kubernetes allows you to also define a readiness probe
for your pod.

The readiness probe is invoked periodically and determines whether the specific
pod should receive client requests or not. When a container’s readiness probe returns
success, it’s signaling that the container is ready to accept requests.

This notion of being ready is obviously something that’s specific to each container.
Kubernetes can merely check if the app running in the container responds to a simple



150

CHAPTER 5  Services: enabling clients to discover and talk to pods

GET / request or it can hit a specific URL path, which causes the app to perform a
whole list of checks to determine if it’s ready. Such a detailed readiness probe, which
takes the app’s specifics into account, is the app developer’s responsibility.

TYPES OF READINESS PROBES
Like liveness probes, three types of readiness probes exist:

An Exec probe, where a process is executed. The container’s status is deter-
mined by the process’ exit status code.

An HTTP GET probe, which sends an HTTP GET request to the container and
the HTTP status code of the response determines whether the container is
ready or not.

A TCP Socket probe, which opens a TCP connection to a specified port of the
container. If the connection is established, the container is considered ready.

UNDERSTANDING THE OPERATION OF READINESS PROBES

When a container is started, Kubernetes can be configured to wait for a configurable
amount of time to pass before performing the first readiness check. After that, it
invokes the probe periodically and acts based on the result of the readiness probe. If a
pod reports that it’s not ready, it’s removed from the service. If the pod then becomes
ready again, it’s re-added.

Unlike liveness probes, if a container fails the readiness check, it won’t be killed or
restarted. This is an important distinction between liveness and readiness probes.
Liveness probes keep pods healthy by killing off unhealthy containers and replacing
them with new, healthy ones, whereas readiness probes make sure that only pods that
are ready to serve requests receive them. This is mostly necessary during container
start up, but it’s also useful after the container has been running for a while.

As you can see in figure 5.11, if a pod’s readiness probe fails, the pod is removed
from the Endpoints object. Clients connecting to the service will not be redirected to
the pod. The effect is the same as when the pod doesn’t match the service’s label
selector at all.

This pod is no longer
an endpoint, because its
Service ) readiness probe has failed.
. . Endpoints
Selector: app=kubia

-

app: kubia app: kubia
Pod: kubia-q3vkg Pod: kubia-kOxz6

Figure 5.11 A pod whose readiness probe fails is removed as an endpoint of a service.



5.5.2

Signaling when a pod is ready to accept connections 151

UNDERSTANDING WHY READINESS PROBES ARE IMPORTANT

Imagine that a group of pods (for example, pods running application servers)
depends on a service provided by another pod (a backend database, for example). If
at any point one of the frontend pods experiences connectivity problems and can’t
reach the database anymore, it may be wise for its readiness probe to signal to Kuber-
netes that the pod isn’t ready to serve any requests at that time. If other pod instances
aren’t experiencing the same type of connectivity issues, they can serve requests nor-
mally. A readiness probe makes sure clients only talk to those healthy pods and never
notice there’s anything wrong with the system.

Adding a readiness probe to a pod

Next you’ll add a readiness probe to your existing pods by modifying the Replication-
Controller’s pod template.

ADDING A READINESS PROBE TO THE POD TEMPLATE
You’ll use the kubectl edit command to add the probe to the pod template in your
existing ReplicationController:

$ kubectl edit rc kubia

When the ReplicationController’s YAML opens in the text editor, find the container
specification in the pod template and add the following readiness probe definition to
the first container under spec.template.spec.containers. The YAML should look
like the following listing.

Listing 5.17 RC creating a pod with a readiness probe: kubia-rc-readinessprobe.yaml

apiVersion: vl
kind: ReplicationController
spec:
template:
spec:
containers:

- name: kubia
image: luksa/kubia

readinessProbe:
exec: AreadinessProbe may
command: be defined for each
- 1s container in the pod.
- /var/ready

The readiness probe will periodically perform the command 1s /var/ready inside the
container. The 1s command returns exit code zero if the file exists, or a non-zero exit
code otherwise. If the file exists, the readiness probe will succeed; otherwise, it will fail.



152

CHAPTER 5  Services: enabling clients to discover and talk to pods

The reason you’re defining such a strange readiness probe is so you can toggle its
result by creating or removing the file in question. The file doesn’t exist yet, so all the
pods should now report not being ready, right? Well, not exactly. As you may remem-
ber from the previous chapter, changing a ReplicationController’s pod template has
no effect on existing pods.

In other words, all your existing pods still have no readiness probe defined. You
can see this by listing the pods with kubectl get pods and looking at the READY col-
umn. You need to delete the pods and have them re-created by the Replication-
Controller. The new pods will fail the readiness check and won’t be included as
endpoints of the service until you create the /var/ready file in each of them.

OBSERVING AND MODIFYING THE PODS’ READINESS STATUS
List the pods again and inspect whether they’re ready or not:

$ kubectl get po

NAME READY STATUS RESTARTS AGE
kubia-2rlgb 0/1 Running 0 lm
kubia-3raxl 0/1 Running 0 1m
kubia-3yw4s 0/1 Running 0 lm

The READY column shows that none of the containers are ready. Now make the readi-
ness probe of one of them start returning success by creating the /var/ready file,
whose existence makes your mock readiness probe succeed:

$ kubectl exec kubia-2rlgb -- touch /var/ready

You’ve used the kubectl exec command to execute the touch command inside the
container of the kubia-2rlgb pod. The touch command creates the file if it doesn’t
yet exist. The pod’s readiness probe command should now exit with status code 0,
which means the probe is successful, and the pod should now be shown as ready. Let’s
see if it is:

$ kubectl get po kubia-2rlgb

NAME READY STATUS RESTARTS AGE
kubia-2rlgb 0/1 Running 0 2m

The pod still isn’t ready. Is there something wrong or is this the expected result? Take
a more detailed look at the pod with kubectl describe. The output should contain
the following line:

Readiness: exec [ls /var/ready] delay=0s timeout=1ls period=10s #success=1
#failure=3

The readiness probe is checked periodically—every 10 seconds by default. The pod
isn’t ready because the readiness probe hasn’t been invoked yet. But in 10 seconds at
the latest, the pod should become ready and its IP should be listed as the only end-
point of the service (run kubectl get endpoints kubia-loadbalancer to confirm).



5.5.3

Signaling when a pod is ready to accept connections 153

HITTING THE SERVICE WITH THE SINGLE READY POD

You can now hit the service URL a few times to see that each and every request is redi-
rected to this one pod:

$ curl http://130.211.53.173

You’ve hit kubia-2rlgb

$ curl http://130.211.53.173
You’ve hit kubia-2rlgb

$ curl http://130.211.53.173
You’ve hit kubia-2rlgb

Even though there are three pods running, only a single pod is reporting as being
ready and is therefore the only pod receiving requests. If you now delete the file, the
pod will be removed from the service again.

Understanding what real-world readiness probes should do

This mock readiness probe is useful only for demonstrating what readiness probes do.
In the real world, the readiness probe should return success or failure depending on
whether the app can (and wants to) receive client requests or not.

Manually removing pods from services should be performed by either deleting the
pod or changing the pod’s labels instead of manually flipping a switch in the probe.

TIP If you want to add or remove a pod from a service manually, add
enabled=true as a label to your pod and to the label selector of your service.
Remove the label when you want to remove the pod from the service.

ALWAYS DEFINE A READINESS PROBE

Before we conclude this section, there are two final notes about readiness probes that
I need to emphasize. First, if you don’t add a readiness probe to your pods, they’ll
become service endpoints almost immediately. If your application takes too long to
start listening for incoming connections, client requests hitting the service will be for-
warded to the pod while it’s still starting up and not ready to accept incoming connec-
tions. Clients will therefore see “Connection refused” types of errors.

TIP  You should always define a readiness probe, even if it’s as simple as send-
ing an HTTP request to the base URL.

DON’T INCLUDE POD SHUTDOWN LOGIC INTO YOUR READINESS PROBES
The other thing I need to mention applies to the other end of the pod’s life (pod
shutdown) and is also related to clients experiencing connection errors.

When a pod is being shut down, the app running in it usually stops accepting con-
nections as soon as it receives the termination signal. Because of this, you might think
you need to make your readiness probe start failing as soon as the shutdown proce-
dure is initiated, ensuring the pod is removed from all services it’s part of. But that’s
not necessary, because Kubernetes removes the pod from all services as soon as you
delete the pod.



154

5.6

5.6.1

CHAPTER 5  Services: enabling clients to discover and talk to pods

Using a headless service for discovering individual pods

You’ve seen how services can be used to provide a stable IP address allowing clients to
connect to pods (or other endpoints) backing each service. Each connection to the
service is forwarded to one randomly selected backing pod. But what if the client
needs to connect to all of those pods? What if the backing pods themselves need to
each connect to all the other backing pods? Connecting through the service clearly
isn’t the way to do this. What is?

For a client to connect to all pods, it needs to figure out the the IP of each individ-
ual pod. One option is to have the client call the Kubernetes API server and get the
list of pods and their IP addresses through an API call, but because you should always
strive to keep your apps Kubernetes-agnostic, using the API server isn’t ideal.

Luckily, Kubernetes allows clients to discover pod IPs through DNS lookups. Usually,
when you perform a DNS lookup for a service, the DNS server returns a single IP—the
service’s cluster IP. But if you tell Kubernetes you don’t need a cluster IP for your service
(you do this by setting the clusterIP field to None in the service specification), the DNS
server will return the pod IPs instead of the single service IP.

Instead of returning a single DNS A record, the DNS server will return multiple A
records for the service, each pointing to the IP of an individual pod backing the ser-
vice at that moment. Clients can therefore do a simple DNS A record lookup and get
the IPs of all the pods that are part of the service. The client can then use that infor-
mation to connect to one, many, or all of them.

Creating a headless service

Setting the clusterIP field in a service spec to None makes the service fheadless, as
Kubernetes won’t assign it a cluster IP through which clients could connect to the
pods backing it.

You’ll create a headless service called kubia-headless now. The following listing
shows its definition.

Listing 5.18 A headless service: kubia-svc-headless.yaml

apiVersion: vl
kind: Service
metadata:
name: kubia-headless
spec:
clusterIP: None
ports:
- port: 80
targetPort: 8080
selector:
app: kubia

This makes the
service headless.

After you create the service with kubectl create, you can inspect it with kubectl get
and kubectl describe. You’ll see it has no cluster IP and its endpoints include (part of)



5.6.2

Using a headless service for discovering individual pods 155

the pods matching its pod selector. I say “part of” because your pods contain a readi-
ness probe, so only pods that are ready will be listed as endpoints of the service.
Before continuing, please make sure at least two pods report being ready, by creating
the /var/ready file, as in the previous example:

$ kubectl exec <pod name> -- touch /var/ready

Discovering pods through DNS

With your pods ready, you can now try performing a DNS lookup to see if you get the
actual pod IPs or not. You’ll need to perform the lookup from inside one of the pods.
Unfortunately, your kubia container image doesn’t include the nslookup (or the dig)
binary, so you can’t use it to perform the DNS lookup.

All you’re trying to do is perform a DNS lookup from inside a pod running in the
cluster. Why not run a new pod based on an image that contains the binaries you
need? To perform DNS-related actions, you can use the tutum/dnsutils container
image, which is available on Docker Hub and contains both the nslookup and the dig
binaries. To run the pod, you can go through the whole process of creating a YAML
manifest for it and passing it to kubectl create, but that’s too much work, right?
Luckily, there’s a faster way.

RUNNING A POD WITHOUT WRITING A YAML MANIFEST

In chapter 1, you already created pods without writing a YAML manifest by using the
kubectl run command. But this time you want to create only a pod—you don’t need
to create a ReplicationController to manage the pod. You can do that like this:

$ kubectl run dnsutils --image=tutum/dnsutils --generator=run-pod/vl
--command -- sleep infinity
pod "dnsutils" created

The trick is in the --generator=run-pod/v1l option, which tells kubectl to create the
pod directly, without any kind of ReplicationController or similar behind it.

UNDERSTANDING DNS A RECORDS RETURNED FOR A HEADLESS SERVICE
Let’s use the newly created pod to perform a DNS lookup:

$ kubectl exec dnsutils nslookup kubia-headless

Name : kubia-headless.default.svc.cluster.local

Address: 10.108.1.4
Name : kubia-headless.default.svc.cluster.local

Address: 10.108.2.5

The DNS server returns two different IPs for the kubia-headless.default.svc
.cluster.local FQDN. Those are the IPs of the two pods that are reporting being
ready. You can confirm this by listing pods with kubectl get pods -o wide, which
shows the pods’ IPs.



156

5.6.3

5.7

CHAPTER 5  Services: enabling clients to discover and talk to pods

This is different from what DNS returns for regular (non-headless) services, such
as for your kubia service, where the returned IP is the service’s cluster IP:

$ kubectl exec dnsutils nslookup kubia

Name : kubia.default.svc.cluster.local
Address: 10.111.249.153

Although headless services may seem different from regular services, they aren’t that
different from the clients’ perspective. Even with a headless service, clients can con-
nect to its pods by connecting to the service’s DNS name, as they can with regular ser-
vices. But with headless services, because DNS returns the pods’ IPs, clients connect
directly to the pods, instead of through the service proxy.

NOTE A headless services still provides load balancing across pods, but through
the DNS round-robin mechanism instead of through the service proxy.

Discovering all pods—even those that aren’t ready

You’ve seen that only pods that are ready become endpoints of services. But some-
times you want to use the service discovery mechanism to find all pods matching the
service’s label selector, even those that aren’t ready.

Luckily, you don’t have to resort to querying the Kubernetes API server. You can
use the DNS lookup mechanism to find even those unready pods. To tell Kubernetes
you want all pods added to a service, regardless of the pod’s readiness status, you must
add the following annotation to the service:

kind: Service
metadata:
annotations:
service.alpha.kubernetes.io/tolerate-unready-endpoints: "true"

WARNING  As the annotation name suggests, as I'm writing this, this is an alpha
feature. The Kubernetes Service API already supports a new service spec field
called publishNotReadyAddresses, which will replace the tolerate-unready-
endpoints annotation. In Kubernetes version 1.9.0, the field is not honored yet
(the annotation is what determines whether unready endpoints are included in
the DNS or not). Check the documentation to see whether that’s changed.

Troubleshooting services

Services are a crucial Kubernetes concept and the source of frustration for many
developers. I've seen many developers lose heaps of time figuring out why they can’t
connect to their pods through the service IP or FQDN. For this reason, a short look at
how to troubleshoot services is in order.

When you’re unable to access your pods through the service, you should start by
going through the following list:



5.8

Summary 157

First, make sure you’re connecting to the service’s cluster IP from within the
cluster, not from the outside.

Don’t bother pinging the service IP to figure out if the service is accessible
(remember, the service’s cluster IP is a virtual IP and pinging it will never work).

If you've defined a readiness probe, make sure it’s succeeding; otherwise the
pod won’t be part of the service.

To confirm that a pod is part of the service, examine the corresponding End-
points object with kubectl get endpoints.

If you’re trying to access the service through its FQDN or a part of it (for exam-
ple, myservice.mynamespace.svc.cluster.local or myservice.mynamespace) and
it doesn’t work, see if you can access it using its cluster IP instead of the FQDN.
Check whether you’re connecting to the port exposed by the service and not
the target port.

Try connecting to the pod IP directly to confirm your pod is accepting connec-
tions on the correct port.

If you can’t even access your app through the pod’s IP, make sure your app isn’t
only binding to localhost.

This should help you resolve most of your service-related problems. You’ll learn much
more about how services work in chapter 11. By understanding exactly how they’re
implemented, it should be much easier for you to troubleshoot them.

Summary

In this chapter, you’ve learned how to create Kubernetes Service resources to expose
the services available in your application, regardless of how many pod instances are
providing each service. You’ve learned how Kubernetes

Exposes multiple pods that match a certain label selector under a single, stable
IP address and port

Makes services accessible from inside the cluster by default, but allows you to
make the service accessible from outside the cluster by setting its type to either
NodePort or LoadBalancer

Enables pods to discover services together with their IP addresses and ports by
looking up environment variables

Allows discovery of and communication with services residing outside the
cluster by creating a Service resource without specifying a selector, by creating
an associated Endpoints resource instead

Provides a DNS CNAME alias for external services with the ExternalName ser-
vice type

Exposes multiple HTTP services through a single Ingress (consuming a sin-
gle IP)



158 CHAPTER 5  Services: enabling clients to discover and talk to pods

Uses a pod container’s readiness probe to determine whether a pod should or
shouldn’t be included as a service endpoint

Enables discovery of pod IPs through DNS when you create a headless service
Along with getting a better understanding of services, you’ve also learned how to

Troubleshoot them

Modify firewall rules in Google Kubernetes/Compute Engine

Execute commands in pod containers through kubectl exec

Run a bash shell in an existing pod’s container

Modify Kubernetes resources through the kubectl apply command

Run an unmanaged ad hoc pod with kubectl run --generator=run-pod/vl



Volumes: attaching
disk storage to containers

This chapter covers

Creating multi-container pods

Creating a volume to share disk storage between
containers

Using a Git repository inside a pod

Attaching persistent storage such as a GCE
Persistent Disk to pods

Using pre-provisioned persistent storage
Dynamic provisioning of persistent storage

In the previous three chapters, we introduced pods and other Kubernetes resources
that interact with them, namely ReplicationControllers, ReplicaSets, DaemonSets,
Jobs, and Services. Now, we’re going back inside the pod to learn how its containers
can access external disk storage and/or share storage between them.

We’ve said that pods are similar to logical hosts where processes running inside
them share resources such as CPU, RAM, network interfaces, and others. One
would expect the processes to also share disks, but that’s not the case. You’ll remem-
ber that each container in a pod has its own isolated filesystem, because the file-
system comes from the container’s image.

159



160

6.1

6.1.1

CHAPTER 6 Volumes: attaching disk storage to containers

Every new container starts off with the exact set of files that was added to the image
at build time. Combine this with the fact that containers in a pod get restarted (either
because the process died or because the liveness probe signaled to Kubernetes that
the container wasn’t healthy anymore) and you’ll realize that the new container will
not see anything that was written to the filesystem by the previous container, even
though the newly started container runs in the same pod.

In certain scenarios you want the new container to continue where the last one fin-
ished, such as when restarting a process on a physical machine. You may not need (or
want) the whole filesystem to be persisted, but you do want to preserve the directories
that hold actual data.

Kubernetes provides this by defining storage volumes. They aren’t top-level resources
like pods, but are instead defined as a part of a pod and share the same lifecycle as the
pod. This means a volume is created when the pod is started and is destroyed when
the pod is deleted. Because of this, a volume’s contents will persist across container
restarts. After a container is restarted, the new container can see all the files that were
written to the volume by the previous container. Also, if a pod contains multiple con-
tainers, the volume can be used by all of them at once.

Introducing volumes

Kubernetes volumes are a component of a pod and are thus defined in the pod’s spec-
ification—much like containers. They aren’t a standalone Kubernetes object and can-
not be created or deleted on their own. A volume is available to all containers in the
pod, but it must be mounted in each container that needs to access it. In each con-
tainer, you can mount the volume in any location of its filesystem.

Explaining volumes in an example

Imagine you have a pod with three containers (shown in figure 6.1). One container
runs a web server that serves HTML pages from the /var/htdocs directory and stores
the access log to /var/logs. The second container runs an agent that creates HTML
files and stores them in /var/html. The third container processes the logs it finds in
the /var/logs directory (rotates them, compresses them, analyzes them, or whatever).

Each container has a nicely defined single responsibility, but on its own each con-
tainer wouldn’t be of much use. Creating a pod with these three containers without
them sharing disk storage doesn’t make any sense, because the content generator
would write the generated HTML files inside its own container and the web server
couldn’t access those files, as it runs in a separate isolated container. Instead, it would
serve an empty directory or whatever you put in the /var/htdocs directory in its con-
tainer image. Similarly, the log rotator would never have anything to do, because its
/var/logs directory would always remain empty with nothing writing logs there. A pod
with these three containers and no volumes basically does nothing.

But if you add two volumes to the pod and mount them at appropriate paths inside
the three containers, as shown in figure 6.2, you’ve created a system that’s much more



Introducing volumes 161

Container: WebServer

Filesystem Webserver
/I_ process
var/
htdocs/ Reads f
logs/
Writes

Container: ContentAgent

Filesystem ContentAgent
/ process
L var/
L htmi/
Writes

Container: LogRotator

Filesystem LogRotator
/ process
L var/
L logs/ ?
Reads
Pod Figure 6.1 Three containers of the

~/  same pod without shared storage

Container: WebServer

Filesystem
/
L var/

htdocs/ N

logs/ —

~—| Volume:
— .
Container: ContentAgent publicHtml

Filesystem S
/
L var/ e R

—
L html/ J
~—— Volume:
(—>
logVol

Container: LogRotator

Filesystem
/
L var/

L logs/

Figure 6.2 Three containers sharing two
_  volumes mounted at various mount paths

Pod




162

6.1.2

CHAPTER 6 Volumes: attaching disk storage to containers

than the sum of its parts. Linux allows you to mount a filesystem at arbitrary locations
in the file tree. When you do that, the contents of the mounted filesystem are accessi-
ble in the directory it’s mounted into. By mounting the same volume into two contain-
ers, they can operate on the same files. In your case, you’re mounting two volumes in
three containers. By doing this, your three containers can work together and do some-
thing useful. Let me explain how.

First, the pod has a volume called publicHtml. This volume is mounted in the Web-
Server container at /var/htdocs, because that’s the directory the web server serves
files from. The same volume is also mounted in the ContentAgent container, but at
/var/html, because that’s where the agent writes the files to. By mounting this single vol-
ume like that, the web server will now serve the content generated by the content agent.

Similarly, the pod also has a volume called 1logVol for storing logs. This volume is
mounted at /var/logs in both the WebServer and the LogRotator containers. Note
that it isn’t mounted in the ContentAgent container. The container cannot access its
files, even though the container and the volume are part of the same pod. It’s not
enough to define a volume in the pod; you need to define a VolumeMount inside the
container’s spec also, if you want the container to be able to access it.

The two volumes in this example can both initially be empty, so you can use a type
of volume called emptyDir. Kubernetes also supports other types of volumes that are
either populated during initialization of the volume from an external source, or an
existing directory is mounted inside the volume. This process of populating or mount-
ing a volume is performed before the pod’s containers are started.

A volume is bound to the lifecycle of a pod and will stay in existence only while the
pod exists, but depending on the volume type, the volume’s files may remain intact
even after the pod and volume disappear, and can later be mounted into a new vol-
ume. Let’s see what types of volumes exist.

Introducing available volume types

A wide variety of volume types is available. Several are generic, while others are spe-
cific to the actual storage technologies used underneath. Don’t worry if you’ve never
heard of those technologies—I hadn’t heard of at least half of them. You’ll probably
only use volume types for the technologies you already know and use. Here’s a list of
several of the available volume types:

emptyDir—A simple empty directory used for storing transient data.
hostPath—Used for mounting directories from the worker node’s filesystem
into the pod.

gitRepo—A volume initialized by checking out the contents of a Git repository.
nfs—An NFS share mounted into the pod.

gcePersistentDisk (Google Compute Engine Persistent Disk), awsElastic-
BlockStore (Amazon Web Services Elastic Block Store Volume), azureDisk
(Microsoft Azure Disk Volume)—Used for mounting cloud provider-specific
storage.



6.2

6.2.1

Using volumes to share data between containers 163

cinder, cephfs, iscsi, flocker, glusterfs, quobyte, rbd, f1lexVolume, vsphere-
Volume, photonPersistentDisk, scaleI0—Used for mounting other types of
network storage.

configMap, secret, downwardAPI—Special types of volumes used to expose cer-
tain Kubernetes resources and cluster information to the pod.
persistentVolumeClaim—A way to use a pre- or dynamically provisioned per-
sistent storage. (We’ll talk about them in the last section of this chapter.)

These volume types serve various purposes. You'll learn about some of them in the
following sections. Special types of volumes (secret, downwardAPI, configMap) are
covered in the next two chapters, because they aren’t used for storing data, but for
exposing Kubernetes metadata to apps running in the pod.

A single pod can use multiple volumes of different types at the same time, and, as
we’ve mentioned before, each of the pod’s containers can either have the volume
mounted or not.

Using volumes to share data between containers

Although a volume can prove useful even when used by a single container, let’s first
focus on how it’s used for sharing data between multiple containers in a pod.

Using an emptyDir volume

The simplest volume type is the emptyDir volume, so let’s look at it in the first exam-
ple of how to define a volume in a pod. As the name suggests, the volume starts out as
an empty directory. The app running inside the pod can then write any files it needs
to it. Because the volume’s lifetime is tied to that of the pod, the volume’s contents are
lost when the pod is deleted.

An emptyDir volume is especially useful for sharing files between containers
running in the same pod. But it can also be used by a single container for when a con-
tainer needs to write data to disk temporarily, such as when performing a sort
operation on a large dataset, which can’t fit into the available memory. The data could
also be written to the container’s filesystem itself (remember the top read-write layer
in a container?), but subtle differences exist between the two options. A container’s
filesystem may not even be writable (we’ll talk about this toward the end of the book),
so writing to a mounted volume might be the only option.

USING AN EMPTYDIR VOLUME IN A POD

Let’s revisit the previous example where a web server, a content agent, and a log rota-
tor share two volumes, but let’s simplify a bit. You’ll build a pod with only the web
server container and the content agent and a single volume for the HTML.

You’ll use Nginx as the web server and the UNIX fortune command to generate
the HTML content. The fortune command prints out a random quote every time you
run it. You’ll create a script that invokes the fortune command every 10 seconds and
stores its output in index.html. You’ll find an existing Nginx image available on



164 CHAPTER 6 Volumes: attaching disk storage to containers

Docker Hub, but you’ll need to either create the fortune image yourself or use the
one I've already built and pushed to Docker Hub under luksa/fortune. If you want a
refresher on how to build Docker images, refer to the sidebar.

Building the fortune container image

Here’s how to build the image. Create a new directory called fortune and then inside
it, create a fortuneloop. sh shell script with the following contents:

#!/bin/bash

trap "exit" SIGINT

mkdir /var/htdocs

while :

do
echo $(date) Writing fortune to /var/htdocs/index.html
/usr/games/fortune > /var/htdocs/index.html
sleep 10

done

Then, in the same directory, create a file called Dockerfile containing the following:

FROM ubuntu:latest

RUN apt-get update ; apt-get -y install fortune
ADD fortuneloop.sh /bin/fortuneloop.sh
ENTRYPOINT /bin/fortuneloop.sh

The image is based on the ubuntu:latest image, which doesn’t include the fortune
binary by default. That’s why in the second line of the Dockerfile you install it with
apt-get. After that, you add the fortuneloop.sh script to the image’s /bin folder.
In the last line of the Dockerfile, you specify that the fortuneloop.sh script should
be executed when the image is run.

After preparing both files, build and upload the image to Docker Hub with the following
two commands (replace luksa with your own Docker Hub user ID):

$ docker build -t luksa/fortune .
$ docker push luksa/fortune

CREATING THE POD

Now that you have the two images required to run your pod, it’s time to create the pod
manifest. Create a file called fortune-pod.yaml with the contents shown in the follow-
ing listing.

Listing 6.1 A pod with two containers sharing the same volume: fortune-pod.yaml

apiVersion: vl
kind: Pod
metadata:
name: fortune
spec:
containers:



Using volumes to share data between containers 165

- image: luksa/fortune ‘ The first container is called html-generator
name: html-generator and runs the luksa/fortune image.
volumeMounts:

- name: html
mountPath: /var/htdocs

- image: nginx:alpine The second container is called web-server
name: web-server ‘ and runs the nginx:alpine image.
volumeMounts:

- name: html
mountPath: /usr/share/nginx/html
readOnly: true
ports:
- containerPort: 80
protocol: TCP
volumes:

- name: html

emptyDir: {}

The volume called html is mounted
at /var/htdocs in the container.

The same volume as above is
mounted at /usr/share/nginx/html
as read-only.

A single emptyDir volume
called html that’s mounted
in the two containers above

The pod contains two containers and a single volume that’s mounted in both of
them, yet at different paths. When the html-generator container starts, it starts writ-
ing the output of the fortune command to the /var/htdocs/index.html file every 10
seconds. Because the volume is mounted at /var/htdocs, the index.html file is writ-
ten to the volume instead of the container’s top layer. As soon as the web-server con-
tainer starts, it starts serving whatever HTML files are in the /usr/share/nginx/html
directory (this is the default directory Nginx serves files from). Because you mounted
the volume in that exact location, Nginx will serve the index.html file written there
by the container running the fortune loop. The end effect is that a client sending an
HTTP request to the pod on port 80 will receive the current fortune message as
the response.

SEEING THE POD IN ACTION

To see the fortune message, you need to enable access to the pod. You’ll do that by
forwarding a port from your local machine to the pod:

$ kubectl port-forward fortune 8080:80

Forwarding from 127.0.0.1:8080 -> 80
Forwarding from [::1]:8080 -> 80

NOTE As an exercise, you can also expose the pod through a service instead
of using port forwarding.

Now you can access the Nginx server through port 8080 of your local machine. Use
curl to do that:

$ curl http://localhost:8080
Beware of a tall blond man with one black shoe.

If you wait a few seconds and send another request, you should receive a different
message. By combining two containers, you created a simple app to see how a volume
can glue together two containers and enhance what each of them does.



166

6.2.2

CHAPTER 6 Volumes: attaching disk storage to containers

SPECIFYING THE MEDIUM TO USE FOR THE EMPTYDIR

The emptybir you used as the volume was created on the actual disk of the worker
node hosting your pod, so its performance depends on the type of the node’s disks.
But you can tell Kubernetes to create the emptybir on a tmpfs filesystem (in memory
instead of on disk). To do this, set the emptybir’s medium to Memory like this:

volumes:
- name: html This emptyDir’s
emptyDir: J files should be
medium: Memory stored in memory.

An emptyDir volume is the simplest type of volume, but other types build upon it.
After the empty directory is created, they populate it with data. One such volume type
is the gitRepo volume type, which we’ll introduce next.

Using a Git repository as the starting point for a volume

A gitRepo volume is basically an emptyDir volume that gets populated by cloning a
Git repository and checking out a specific revision when the pod is starting up (but
before its containers are created). Figure 6.3 shows how this unfolds.

User

1. User (or a replication
controller) creates pod
with gitRepo volume

( ) f
Container
\ //

2. Kubernetes creates
an empty directory and
clones the specified Git

: repository into it
gitRepo m

volume

Repository

3. The pod’s container is started
(with the volume mounted at
the mount path)

Pod
N J

Figure 6.3 A gitRepo volume is an emptyDir volume initially populated with the contents of a
Git repository.

NOTE After the gitRepo volume is created, it isn’t kept in sync with the repo
it’s referencing. The files in the volume will not be updated when you push
additional commits to the Git repository. However, if your pod is managed by
a ReplicationController, deleting the pod will result in a new pod being cre-
ated and this new pod’s volume will then contain the latest commits.

For example, you can use a Git repository to store static HTML files of your website
and create a pod containing a web server container and a gitRepo volume. Every time
the pod is created, it pulls the latest version of your website and starts serving it. The



Using volumes to share data between containers 167

only drawback to this is that you need to delete the pod every time you push changes
to the gitRepo and want to start serving the new version of the website.
Let’s do this right now. It’s not that different from what you did before.

RUNNING A WEB SERVER POD SERVING FILES FROM A CLONED GIT REPOSITORY

Before you create your pod, you’ll need an actual Git repository with HTML files in it.
I've created a repo on GitHub at https://github.com/luksa/kubia-website-example.git.
You’ll need to fork it (create your own copy of the repo on GitHub) so you can push
changes to it later.

Once you’ve created your fork, you can move on to creating the pod. This time,
you’ll only need a single Nginx container and a single gitRepo volume in the pod (be
sure to point the gitRepo volume to your own fork of my repository), as shown in the
following listing.

Listing 6.2 A pod using a gitRepo volume: gitrepo-volume-pod.yaml

apiversion: vl
kind: Pod
metadata:

name: gitrepo-volume-pod

spec:

containers:

- image: nginx:alpine
name: web-server
volumeMounts:

- name: html
mountPath: /usr/share/nginx/html
readOnly: true

ports:

- containerPort: 80
protocol: TCP

volumes: You're creating a The volume will clone
- name: html gitRepo volume. this Git repository.
gitRepo:
repository: https://github.com/luksa/kubia-website-example.git
revision: master Th b "
i . e master branc|
directony - You want the repo to j will be checked out.

be cloned into the root
dir of the volume.

When you create the pod, the volume is first initialized as an empty directory and then
the specified Git repository is cloned into it. If you hadn’t set the directory to . (dot),
the repository would have been cloned into the kubia-website-example subdirectory,
which isn’t what you want. You want the repo to be cloned into the root directory of
your volume. Along with the repository, you also specified you want Kubernetes to
check out whatever revision the master branch is pointing to at the time the volume
is created.

With the pod running, you can try hitting it through port forwarding, a service, or by
executing the curl command from within the pod (or any other pod inside the cluster).


https://github.com/luksa/kubia-website-example.git

168

CHAPTER 6 Volumes: attaching disk storage to containers

CONFIRMING THE FILES AREN’T KEPT IN SYNC WITH THE GIT REPO

Now you’ll make changes to the index.html file in your GitHub repository. If you
don’t use Git locally, you can edit the file on GitHub directly—click on the file in your
GitHub repository to open it and then click on the pencil icon to start editing it.
Change the text and then commit the changes by clicking the button at the bottom.

The master branch of the Git repository now includes the changes you made to the
HTML file. These changes will not be visible on your Nginx web server yet, because
the gitRepo volume isn’t kept in sync with the Git repository. You can confirm this by
hitting the pod again.

To see the new version of the website, you need to delete the pod and create
it again. Instead of having to delete the pod every time you make changes, you could
run an additional process, which keeps your volume in sync with the Git repository.
I won’t explain in detail how to do this. Instead, try doing this yourself as an exer-
cise, but here are a few pointers.

INTRODUCING SIDECAR CONTAINERS

The Git sync process shouldn’t run in the same container as the Nginx web server, but
in a second container: a sidecar container. A sidecar container is a container that aug-
ments the operation of the main container of the pod. You add a sidecar to a pod so
you can use an existing container image instead of cramming additional logic into the
main app’s code, which would make it overly complex and less reusable.

To find an existing container image, which keeps a local directory synchronized
with a Git repository, go to Docker Hub and search for “git sync.” You’ll find many
images that do that. Then use the image in a new container in the pod from the previ-
ous example, mount the pod’s existing gitRepo volume in the new container, and
configure the Git sync container to keep the files in sync with your Git repo. If you set
everything up correctly, you should see that the files the web server is serving are kept
in sync with your GitHub repo.

NOTE An example in chapter 18 includes using a Git sync container like the
one explained here, so you can wait until you reach chapter 18 and follow the
step-by-step instructions then instead of doing this exercise on your own now.

USING A GITREPO VOLUME WITH PRIVATE GIT REPOSITORIES
There’s one other reason for having to resort to Git sync sidecar containers. We
haven’t talked about whether you can use a gitRepo volume with a private Git repo. It
turns out you can’t. The current consensus among Kubernetes developers is to keep
the gitRepo volume simple and not add any support for cloning private repositories
through the SSH protocol, because that would require adding additional config
options to the gitRepo volume.

If you want to clone a private Git repo into your container, you should use a git-
sync sidecar or a similar method instead of a gitRepo volume.



6.3

6.3.1

Accessing files on the worker node’s filesystem 169

WRAPPING UP THE GITREPO VOLUME

A gitRepo volume, like the emptyDir volume, is basically a dedicated directory cre-
ated specifically for, and used exclusively by, the pod that contains the volume. When
the pod is deleted, the volume and its contents are deleted. Other types of volumes,
however, don’t create a new directory, but instead mount an existing external direc-
tory into the pod’s container’s filesystem. The contents of that volume can survive
multiple pod instantiations. We’ll learn about those types of volumes next.

Accessing files on the worker node’s filesystem

Most pods should be oblivious of their host node, so they shouldn’t access any files on
the node’s filesystem. But certain system-level pods (remember, these will usually be
managed by a DaemonSet) do need to either read the node’s files or use the node’s
filesystem to access the node’s devices through the filesystem. Kubernetes makes this
possible through a hostPath volume.

Introducing the hostPath volume

A hostPath volume points to a specific file or directory on the node’s filesystem (see
figure 6.4). Pods running on the same node and using the same path in their host-
Path volume see the same files.

Node 1 Node 2

Pod Pod

hostPath hostPath
volume volume

hostPath

volume

/some/path/on/host /some/path/on/host

Figure 6.4 A hostPath volume mounts a file or directory on the worker node into
the container’s filesystem.

hostPath volumes are the first type of persistent storage we’re introducing, because
both the gitRepo and emptyDir volumes’ contents get deleted when a pod is torn
down, whereas a hostPath volume’s contents don’t. If a pod is deleted and the next
pod uses a hostPath volume pointing to the same path on the host, the new pod will
see whatever was left behind by the previous pod, but only if it’s scheduled to the same
node as the first pod.



170

6.3.2

CHAPTER 6 Volumes: attaching disk storage to containers

If you’re thinking of using a hostPath volume as the place to store a database’s
data directory, think again. Because the volume’s contents are stored on a specific
node’s filesystem, when the database pod gets rescheduled to another node, it will no
longer see the data. This explains why it’s not a good idea to use a hostPath volume
for regular pods, because it makes the pod sensitive to what node it’s scheduled to.

Examining system pods that use hostPath volumes

Let’s see how a hostPath volume can be used properly. Instead of creating a new pod,
let’s see if any existing system-wide pods are already using this type of volume. As you
may remember from one of the previous chapters, several such pods are running in
the kube-system namespace. Let’s list them again:

$ kubectl get pod s --namespace kube-system

NAME READY STATUS RESTARTS AGE
fluentd-kubia-4ebc2fle-9a3e 1/1 Running 1 4d
fluentd-kubia-4ebc2fle-e2vz 1/1 Running 1 31d

Pick the first one and see what kinds of volumes it uses (shown in the following listing).

Listing 6.3 A pod using hostPath volumes to access the node’s logs

$ kubectl describe po fluentd-kubia-4ebc2fle-9a3e --namespace kube-system

Name : fluentd-cloud-logging-gke-kubia-default-pool-4ebc2fle-9a3e
Namespace: kube-system
Volumes:
varlog:
Type: HostPath (bare host directory volume)
Path: /var/log
varlibdockercontainers:
Type: HostPath (bare host directory volume)
Path: /var/lib/docker/containers

TIP Ifyou’re using Minikube, try the kube-addon-manager-minikube pod.

Aha! The pod uses two hostPath volumes to gain access to the node’s /var/log and
the /var/lib/docker/containers directories. You’d think you were lucky to find a pod
using a hostPath volume on the first try, but not really (at least not on GKE). Check
the other pods, and you’ll see most use this type of volume either to access the node’s
log files, kubeconfig (the Kubernetes config file), or the CA certificates.

If you inspect the other pods, you’ll see none of them uses the hostPath volume
for storing their own data. They all use it to get access to the node’s data. But as we’ll
see later in the chapter, hostPath volumes are often used for trying out persistent stor-
age in single-node clusters, such as the one created by Minikube. Read on to learn
about the types of volumes you should use for storing persistent data properly even in
a multi-node cluster.



6.4

6.4.1

Using persistent storage 171

TIP Remember to use hostPath volumes only if you need to read or write sys-
tem files on the node. Never use them to persist data across pods.

Using persistent storage

When an application running in a pod needs to persist data to disk and have that
same data available even when the pod is rescheduled to another node, you can’t use
any of the volume types we’ve mentioned so far. Because this data needs to be accessi-
ble from any cluster node, it must be stored on some type of network-attached stor-
age (NAS).

To learn about volumes that allow persisting data, you’ll create a pod that will run
the MongoDB document-oriented NoSQL database. Running a database pod without
a volume or with a non-persistent volume doesn’t make sense, except for testing
purposes, so you’ll add an appropriate type of volume to the pod and mount it in the
MongoDB container.

Using a GCE Persistent Disk in a pod volume

If you've been running these examples on Google Kubernetes Engine, which runs
your cluster nodes on Google Compute Engine (GCE), you’ll use a GCE Persistent
Disk as your underlying storage mechanism.

In the early versions, Kubernetes didn’t provision the underlying storage automati-
cally—you had to do that manually. Automatic provisioning is now possible, and you’ll
learn about it later in the chapter, but first, you’ll start by provisioning the storage
manually. It will give you a chance to learn exactly what’s going on underneath.

CREATING A GCE PERSISTENT Disk

You’ll start by creating the GCE persistent disk first. You need to create it in the same
zone as your Kubernetes cluster. If you don’t remember what zone you created the
cluster in, you can see it by listing your Kubernetes clusters with the gcloud command
like this:

$ gcloud container clusters list
NAME ZONE MASTER_VERSION MASTER IP
kubia europe-westl-b 1.2.5 104.155.84.137

This shows you’ve created your cluster in zone europe-west1-b, so you need to create
the GCE persistent disk in the same zone as well. You create the disk like this:

$ gcloud compute disks create --size=1GiB --zone=europe-westl-b mongodb
WARNING: You have selected a disk size of under [200GB]. This may result in
poor I/0 performance. For more information, see:
https://developers.google.com/compute/docs/disks#pdperformance.
Created [https://www.googleapis.com/compute/vl/projects/rapid-pivot-
136513 /zones/europe-westl-b/disks/mongodb] .
NAME ZONE SIZE GB TYPE STATUS
mongodb europe-westl-b 1 pd-standard READY



172 CHAPTER 6 Volumes: attaching disk storage to containers

This command creates a 1 GiB large GCE persistent disk called mongodb. You can
ignore the warning about the disk size, because you don’t care about the disk’s perfor-
mance for the tests you’re about to run.

CREATING A POD USING A GCEPERSISTENTDISK VOLUME

Now that you have your physical storage properly set up, you can use it in a volume
inside your MongoDB pod. You’re going to prepare the YAML for the pod, which is
shown in the following listing.

Listing 6.4 A pod using a gcePersistentDisk volume: mongodb-pod-gcepd.yaml

apivVersion: vl

kind: Pod
metadata:
name: mongodb
spec: The type of the volume
volumes: is a GCE Persistent Disk.
—> - name: mongodb-data
The :fatmh: gcePersistentDisk: The name of the persistent
volume pdName: mongodb disk must match the. actual
(also féType: ext4 R — PD you created earlier.
contailners:
referenced :
when - image: mongo The filesystem type is EXT4
mounting name: mongodb (a type of Linux filesystem).
the volume) volumeMounts:
—> - name: mongodb-data
mountPath: /data/db <1 The path where MongoDB
ports: stores its data

- containerPort: 27017
protocol: TCP

NOTE If you're using Minikube, you can’t use a GCE Persistent Disk, but you
can deploy mongodb-pod-hostpath.yaml, which uses a hostPath volume
instead of a GCE PD.

The pod contains a single container and a single volume backed by the GCE Per-
sistent Disk you’ve created (as shown in figure 6.5). You're mounting the volume
inside the container at /data/db, because that’s where MongoDB stores its data.

Pod: mongodb

Container: mongodb

Fﬁ gcePersistentDisk:
volumeMounts: dName: mongodb
Volume: P J GCE

name: mongodb-data . o
mountPath: /data/db mongodb Persistent Disk:

mongodb

A J

Figure 6.5 A pod with a single container running MongoDB, which mounts a volume referencing an
external GCE Persistent Disk



Using persistent storage 173

WRITING DATA TO THE PERSISTENT STORAGE BY ADDING DOCUMENTS TO YOUR IVIONGODB DATABASE

Now that you’ve created the pod and the container has been started, you can run the

MongoDB shell inside the container and use it to write some data to the data store.
You’ll run the shell as shown in the following listing.

Listing 6.5 Entering the MongoDB shell inside the mongodb pod

$ kubectl exec -it mongodb mongo

MongoDB shell version: 3.2.8

connecting to: mongodb://127.0.0.1:27017

Welcome to the MongoDB shell.

For interactive help, type "help".

For more comprehensive documentation, see
http://docs.mongodb.org/

Questions? Try the support group
http://groups.google.com/group/mongodb-user

MongoDB allows storing JSON documents, so you’ll store one to see if it’s stored per-
sistently and can be retrieved after the pod is re-created. Insert a new JSON document
with the following commands:

> use mystore

switched to db mystore

> db.foo.insert ({name: 'foo'})
WriteResult ({ "nInserted" : 1 })

You've inserted a simple JSON document with a single property (name: 'foo’). Now,
use the find () command to see the document you inserted:

> db.foo.find ()
{ " id" : ObjectId("57a6leb9de0cfd512374cc75"), "name" : "foo" }

There it is. The document should be stored in your GCE persistent disk now.

RE-CREATING THE POD AND VERIFYING THAT IT CAN READ THE DATA PERSISTED BY THE PREVIOUS POD
You can now exit the mongodb shell (type exit and press Enter), and then delete the
pod and recreate it:

$ kubectl delete pod mongodb

pod "mongodb" deleted

$ kubectl create -f mongodb-pod-gcepd.yaml
pod "mongodb" created

The new pod uses the exact same GCE persistent disk as the previous pod, so the
MongoDB container running inside it should see the exact same data, even if the pod
is scheduled to a different node.

TIP You can see what node a pod is scheduled to by running kubectl get po
-o wide.



174

6.4.2

CHAPTER 6 Volumes: attaching disk storage to containers

Once the container is up, you can again run the MongoDB shell and check to see if the
document you stored earlier can still be retrieved, as shown in the following listing.

Listing 6.6 Retrieving MongoDB’s persisted data in a new pod

$ kubectl exec -it mongodb mongo
MongoDB shell version: 3.2.8

connecting to: mongodb://127.0.0.1:27017
Welcome to the MongoDB shell.

> use mystore

switched to db mystore

> db.foo.find()

{ " id" : ObjectId("57a6leb9de0cfd512374cc75"), "name" : "foo" }

As expected, the data is still there, even though you deleted the pod and re-created it.
This confirms you can use a GCE persistent disk to persist data across multiple pod
instances.

You're done playing with the MongoDB pod, so go ahead and delete it again, but
hold off on deleting the underlying GCE persistent disk. You’ll use it again later in
the chapter.

Using other types of volumes with underlying persistent storage

The reason you created the GCE Persistent Disk volume is because your Kubernetes
cluster runs on Google Kubernetes Engine. When you run your cluster elsewhere, you
should use other types of volumes, depending on the underlying infrastructure.

If your Kubernetes cluster is running on Amazon’s AWS EC2, for example, you can
use an awsElasticBlockStore volume to provide persistent storage for your pods. If
your cluster runs on Microsoft Azure, you can use the azureFile or the azureDisk
volume. We won’t go into detail on how to do that here, but it’s virtually the same as in
the previous example. First, you need to create the actual underlying storage, and
then set the appropriate properties in the volume definition.

UsING AN AWS ELASTIC BLOCK STORE VOLUME

For example, to use an AWS elastic block store instead of the GCE Persistent Disk,
you’d only need to change the volume definition as shown in the following listing (see
those lines printed in bold).

Listing 6.7 A pod using an awsElasticBlockStore volume: mongodb-pod-aws.yaml

apiVersion: vl
kind: Pod
metadata:

name: mongodb
spec:

volumes:

- name: mongodb-data Using awsElasticBlockStore
awsElasticBlockStore: instead of gcePersistentDisk



Using persistent storage 175

volumeId: my-volume Specify the ID of the EBS
fsType: ext4 The filesystem type volume you created.

containers: is EXT4 as before.

UsING AN NFS VOLUME

If your cluster is running on your own set of servers, you have a vast array of other sup-
ported options for mounting external storage inside your volume. For example, to
mount a simple NFS share, you only need to specify the NFS server and the path
exported by the server, as shown in the following listing.

Listing 6.8 A pod using an nfs volume: mongodb-pod-nfs.yaml

volumes: . )
- name: mongodb-data This volume is backed
nfs: by an NFS share.
server: 1.2.3.4 The IP of the

path: /some/path The path exported NFS server

by the server

USING OTHER STORAGE TECHNOLOGIES

Other supported options include iscsi for mounting an ISCSI disk resource, glusterfs
for a GlusterFS mount, rbd for a RADOS Block Device, flexVolume, cinder, cephfs,
flocker, fc (Fibre Channel), and others. You don’t need to know all of them if you're
not using them. They're mentioned here to show you that Kubernetes supports a
broad range of storage technologies and you can use whichever you prefer and are
used to.

To see details on what properties you need to set for each of these volume types,
you can either turn to the Kubernetes API definitions in the Kubernetes API refer-
ence or look up the information through kubectl explain, as shown in chapter 3. If
you’re already familiar with a particular storage technology, using the explain com-
mand should allow you to easily figure out how to mount a volume of the proper type
and use it in your pods.

But does a developer need to know all this stuff? Should a developer, when creat-
ing a pod, have to deal with infrastructure-related storage details, or should that be
left to the cluster administrator?

Having a pod’s volumes refer to the actual underlying infrastructure isn’t what
Kubernetes is about, is it? For example, for a developer to have to specify the host-
name of the NFS server feels wrong. And that’s not even the worst thing about it.

Including this type of infrastructure-related information into a pod definition
means the pod definition is pretty much tied to a specific Kubernetes cluster. You
can’t use the same pod definition in another one. That’s why using volumes like this
isn’t the best way to attach persistent storage to your pods. You’ll learn how to improve
on this in the next section.



176

6.5

6.5.1

CHAPTER 6 Volumes: attaching disk storage to containers

Decoupling pods from the underlying storage technology

All the persistent volume types we’ve explored so far have required the developer of the
pod to have knowledge of the actual network storage infrastructure available in the clus-
ter. For example, to create a NFS-backed volume, the developer has to know the actual
server the NFS export is located on. This is against the basic idea of Kubernetes, which
aims to hide the actual infrastructure from both the application and its developer, leav-
ing them free from worrying about the specifics of the infrastructure and making apps
portable across a wide array of cloud providers and on-premises datacenters.

Ideally, a developer deploying their apps on Kubernetes should never have to
know what kind of storage technology is used underneath, the same way they don’t
have to know what type of physical servers are being used to run their pods. Infrastruc-
ture-related dealings should be the sole domain of the cluster administrator.

When a developer needs a certain amount of persistent storage for their applica-
tion, they can request it from Kubernetes, the same way they can request CPU, mem-
ory, and other resources when creating a pod. The system administrator can configure
the cluster so it can give the apps what they request.

Introducing PersistentVolumes and PersistentVolumeClaims

To enable apps to request storage in a Kubernetes cluster without having to deal with
infrastructure specifics, two new resources were introduced. They are Persistent-
Volumes and PersistentVolumeClaims. The names may be a bit misleading, because as
you’ve seen in the previous few sections, even regular Kubernetes volumes can be
used to store persistent data.

Using a PersistentVolume inside a pod is a little more complex than using a regular
pod volume, so let’s illustrate how pods, PersistentVolumeClaims, PersistentVolumes,
and the actual underlying storage relate to each other in figure 6.6.

Admin 1. Cluster admin sets up some type of
network storage (NFS export or similar)

é Persistent

2. Admin then creates a PersistentVolume (PV) Volume
by posting a PV descriptor to the Kubernetes API

3. User creates a
User PersistentVolumeClaim (PVC)

Persistent

Vel i 4. Kubernetes finds a PV of

— [} adequate size and access

(,: mode and binds the PVC

i 50 Volume frp==-======= to the PV
. User creates a

pod with a volume
referencing the PVC

Pod

Figure 6.6 PersistentVolumes are provisioned by cluster admins and consumed by pods
through PersistentVolumeClaims.



6.5.2

Decoupling pods from the underlying storage technology 177

Instead of the developer adding a technology-specific volume to their pod, it’s the
cluster administrator who sets up the underlying storage and then registers it in
Kubernetes by creating a PersistentVolume resource through the Kubernetes API
server. When creating the PersistentVolume, the admin specifies its size and the access
modes it supports.

When a cluster user needs to use persistent storage in one of their pods, they first
create a PersistentVolumeClaim manifest, specifying the minimum size and the access
mode they require. The user then submits the PersistentVolumeClaim manifest to the
Kubernetes API server, and Kubernetes finds the appropriate PersistentVolume and
binds the volume to the claim.

The PersistentVolumeClaim can then be used as one of the volumes inside a pod.
Other users cannot use the same PersistentVolume until it has been released by delet-
ing the bound PersistentVolumeClaim.

Creating a PersistentVolume

Let’s revisit the MongoDB example, but unlike before, you won’t reference the GCE
Persistent Disk in the pod directly. Instead, you'll first assume the role of a cluster
administrator and create a PersistentVolume backed by the GCE Persistent Disk. Then
you’ll assume the role of the application developer and first claim the PersistentVol-
ume and then use it inside your pod.

In section 6.4.1 you set up the physical storage by provisioning the GCE Persistent
Disk, so you don’t need to do that again. All you need to do is create the Persistent-
Volume resource in Kubernetes by preparing the manifest shown in the following list-
ing and posting it to the API server.

Listing 6.9 A gcePersistentDisk PersistentVolume: mongodb-pv-gcepd.yaml

apivVersion: vl
kind: PersistentVolume

metadata:
name: mongodb-pv
spec:
capacity: Defining the
storage: 1Gi PersistentVolume’s size It can either be mounted by a single
accessModes: client for reading and writing or by
- ReadWriteOnce multiple clients for reading only.
- ReadOnlyMany
pers1st§ntVoluWeRecla1mPol1cy: Retain After the claim is released,
gcepersistentDisk: the PersistentVolume
Ifxsigamif ertlzodb The PersistentVolume is should be retained (not
ype: backed by the GCE Persistent erased or deleted).

Disk you created earlier.



178

CHAPTER 6 Volumes: attaching disk storage to containers

NOTE If you're using Minikube, create the PV using the mongodb-pv-host-
path.yaml file.

When creating a PersistentVolume, the administrator needs to tell Kubernetes what its
capacity is and whether it can be read from and/or written to by a single node or by
multiple nodes at the same time. They also need to tell Kubernetes what to do with the
PersistentVolume when it’s released (when the PersistentVolumeClaim it’s bound to is
deleted). And last, but certainly not least, they need to specify the type, location, and
other properties of the actual storage this PersistentVolume is backed by. If you look
closely, this last part is exactly the same as earlier, when you referenced the GCE Per-
sistent Disk in the pod volume directly (shown again in the following listing).

Listing 6.10 Referencing a GCE PD in a pod’s volume

spec:
volumes:
- name: mongodb-data
gcePersistentDisk:
pdName: mongodb
fsType: ext4

After you create the PersistentVolume with the kubectl create command, it should
be ready to be claimed. See if it is by listing all PersistentVolumes:

$ kubectl get pv
NAME CAPACITY RECLAIMPOLICY ACCESSMODES STATUS CLAIM
mongodb-pv 1Gi Retain RWO, ROX Available

NOTE Several columns are omitted. Also, pv is used as a shorthand for
persistentvolume.

As expected, the PersistentVolume is shown as Available, because you haven’t yet cre-
ated the PersistentVolumeClaim.

NOTE PersistentVolumes don’t belong to any namespace (see figure 6.7).
They’re cluster-level resources like nodes.



6.5.3

Decoupling pods from the underlying storage technology 179

Persistent Persistent Persistent Persistent Persistent
Volume Volume Volume Volume Volume
Namespace A Namespace B
User A : ! User B
Persistent Persistent
Volume Volume
Claim(s) Claim(s)
Pod(s) Pod(s) -
k T
N N
N N
: l
(C
vy v
Node Node Node Node Node Node

Figure 6.7 PersistentVolumes, like cluster Nodes, don’t belong to any namespace, unlike pods and
PersistentVolumeClaims.

Claiming a PersistentVolume by creating a
PersistentVolumeClaim

Now let’s lay down our admin hats and put our developer hats back on. Say you need
to deploy a pod that requires persistent storage. You’ll use the PersistentVolume you
created earlier. But you can’t use it directly in the pod. You need to claim it first.

Claiming a PersistentVolume is a completely separate process from creating a pod,
because you want the same PersistentVolumeClaim to stay available even if the pod is
rescheduled (remember, rescheduling means the previous pod is deleted and a new
one is created).

CREATING A PERSISTENTVOLUMECLAIM

You’ll create the claim now. You need to prepare a PersistentVolumeClaim manifest
like the one shown in the following listing and post it to the Kubernetes API through
kubectl create.

Listing 6.11 A PersistentVolumeClaim: mongodb-pvc.yaml

apivVersion: vl . ,
kind: PersistentVolumeClaim The name of your CIa'm__You I
need this later when using the

metadata: - )
claim as the pod’s volume.

name: mongodb-pvc



180

CHAPTER 6 Volumes: attaching disk storage to containers

spec:
resources:
requests: , ‘ Requesting 1 GiB of storage
storage: 1G1
accessModes: ‘ You want the storage to support a single
- ReadWriteOnce client (performing both reads and writes).
storageClassName: ""
You’ll learn about this in the section
about dynamic provisioning.

As soon as you create the claim, Kubernetes finds the appropriate PersistentVolume
and binds it to the claim. The PersistentVolume’s capacity must be large enough to
accommodate what the claim requests. Additionally, the volume’s access modes must
include the access modes requested by the claim. In your case, the claim requests 1 GiB
of storage and a ReadWriteOnce access mode. The PersistentVolume you created ear-
lier matches those two requirements so it is bound to your claim. You can see this by
inspecting the claim.

LISTING PERSISTENTVOLUMECLAIMS
List all PersistentVolumeClaims to see the state of your PVC:
$ kubectl get pvec

NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
mongodb-pvc Bound mongodb-pv 1Gi RWO, ROX 3s

NOTE We’'re using pvc as a shorthand for persistentvolumeclaim.

The claim is shown as Bound to PersistentVolume mongodb-pv. Note the abbreviations
used for the access modes:

RWO—ReadWriteOnce—Only a single node can mount the volume for reading
and writing.

ROX—ReadOnlyMany—Multiple nodes can mount the volume for reading.
RWX—ReadWriteMany—Multiple nodes can mount the volume for both reading
and writing.

NOTE RWO, ROX, and RWX pertain to the number of worker nodes that can use
the volume at the same time, not to the number of pods!

LISTING PERSISTENTVOLUMES

You can also see that the PersistentVolume is now Bound and no longer Available by
inspecting it with kubectl get:

$ kubectl get pv

NAME CAPACITY ACCESSMODES STATUS CLAIM AGE
mongodb-pv 1Gi RWO, ROX Bound default/mongodb-pvc 1m

The PersistentVolume shows it’s bound to claim default/mongodb-pve. The default
part is the namespace the claim resides in (you created the claim in the default



6.5.4

Decoupling pods from the underlying storage technology 181

namespace). We've already said that PersistentVolume resources are cluster-scoped
and thus cannot be created in a specific namespace, but PersistentVolumeClaims can
only be created in a specific namespace. They can then only be used by pods in the
same namespace.

Using a PersistentVolumeClaim in a pod

The PersistentVolume is now yours to use. Nobody else can claim the same volume
until you release it. To use it inside a pod, you need to reference the Persistent-
VolumeClaim by name inside the pod’s volume (yes, the PersistentVolumeClaim, not
the PersistentVolume directly!), as shown in the following listing.

Listing 6.12 A pod using a PersistentVolumeClaim volume: mongodb-pod-pvc.yaml

apiversion: vl
kind: Pod
metadata:
name: mongodb
spec:
containers:
- image: mongo
name: mongodb
volumeMounts:
- name: mongodb-data
mountPath: /data/db
ports:
- containerPort: 27017
protocol: TCP

volumes:
- name: mongodb-data
persistentVolumeClaim: Referencing the PersistentVolumeClaim
claimName: mongodb-pvc by name in the pod volume

Go ahead and create the pod. Now, check to see if the pod is indeed using the same
PersistentVolume and its underlying GCE PD. You should see the data you stored ear-
lier by running the MongoDB shell again, as shown in the following listing.

Listing 6.13 Retrieving MongoDB’s persisted data in the pod using the PVC and PV

$ kubectl exec -it mongodb mongo
MongoDB shell version: 3.2.8

connecting to: mongodb://127.0.0.1:27017
Welcome to the MongoDB shell.

> use mystore

switched to db mystore

> db.foo.£find ()

{ " id" : ObjectId("57a6leb9de0cfd512374cc75"), "name" : "foo" }

And there it is. You‘re able to retrieve the document you stored into MongoDB
previously.



182 CHAPTER 6 Volumes: attaching disk storage to containers

6.5.5 Understanding the benefits of using PersistentVolumes and claims

Examine figure 6.8, which shows both ways a pod can use a GCE Persistent Disk—
directly or through a PersistentVolume and claim.

e N
Pod: mongodb

Container: mongodb

@ gcePersistentDisk:
volumeMounts: dName: mongodb
Volume: P d GCE

name: mongodb-data Persistent Disk:
. mongodb :
mountPath: /data/db 9 mongodb

Pod: mongodb
GCE
Persistent Disk:
mongodb

Container: mongodb

volumeMounts:
name: mongodb-data
mountPath: /data/db

Volume:
mongodb

gcePersistentDisk:
pdName: mongodb

A J

persistentVolumeClaim:

claimName: mongodb-pvc Claim lists
1Gi and
ReadWriteOnce
PersistentVolumeClaim: access PersistentVolume:

mongodb-pv
(1 Gi, RWO, RWX)

mongodb-pvc

Figure 6.8 Using the GCE Persistent Disk directly or through a PVC and PV

Consider how using this indirect method of obtaining storage from the infrastructure
is much simpler for the application developer (or cluster user). Yes, it does require
the additional steps of creating the PersistentVolume and the PersistentVolumeClaim,
but the developer doesn’t have to know anything about the actual storage technology
used underneath.

Additionally, the same pod and claim manifests can now be used on many different
Kubernetes clusters, because they don’t refer to anything infrastructure-specific. The
claim states, “I need x amount of storage and I need to be able to read and write to it
by a single client at once,” and then the pod references the claim by name in one of
its volumes.



6.5.6

Decoupling pods from the underlying storage technology 183

Recycling PersistentVolumes

Before you wrap up this section on PersistentVolumes, let’s do one last quick experi-
ment. Delete the pod and the PersistentVolumeClaim:

$ kubectl delete pod mongodb

pod "mongodb" deleted

$ kubectl delete pvc mongodb-pvc
persistentvolumeclaim "mongodb-pvc" deleted

What if you create the PersistentVolumeClaim again? Will it be bound to the Persistent-
Volume or not? After you create the claim, what does kubect1 get pvc show?
$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
mongodb-pvc Pending 13s

The claim’s status is shown as Pending. Interesting. When you created the claim ear-
lier, it was immediately bound to the PersistentVolume, so why wasn’t it bound now?
Maybe listing the PersistentVolumes can shed more light on this:

$ kubectl get pv
NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
mongodb-pv  1Gi RWO, ROX Released default/mongodb-pvc 5m

The STATUS column shows the PersistentVolume as Released, not Available like
before. Because you've already used the volume, it may contain data and shouldn’t be
bound to a completely new claim without giving the cluster admin a chance to clean it
up. Without this, a new pod using the same PersistentVolume could read the data
stored there by the previous pod, even if the claim and pod were created in a different
namespace (and thus likely belong to a different cluster tenant).

RECLAIMING PERSISTENTVOLUMES MANUALLY

You told Kubernetes you wanted your PersistentVolume to behave like this when you
created it—by setting its persistentVolumeReclaimPolicy to Retain. You wanted
Kubernetes to retain the volume and its contents after it’s released from its claim. As
far as I'm aware, the only way to manually recycle the PersistentVolume to make it
available again is to delete and recreate the PersistentVolume resource. As you do
that, it’s your decision what to do with the files on the underlying storage: you can
either delete them or leave them alone so they can be reused by the next pod.

RECLAIMING PERSISTENTVOLUMES AUTOMATICALLY
Two other possible reclaim policies exist: Recycle and Delete. The first one deletes
the volume’s contents and makes the volume available to be claimed again. This way,
the PersistentVolume can be reused multiple times by different PersistentVolume-
Claims and different pods, as you can see in figure 6.9.

The Delete policy, on the other hand, deletes the underlying storage. Note that
the Recycle option is currently not available for GCE Persistent Disks. This type of



184

CHAPTER 6 Volumes: attaching disk storage to containers

PersistentVolume
PersistentVolumeClaim 1 | PersistentVolumeClaim 2
Pod 1 Pod 2
Time
Admin creates Pod 1 Pod 1 Pod 2 Pod 2 Admin deletes
PersistentVolume mounts unmounts  mounts unmounts PersistentVolume
PVC PVC PVC PVC
User creates PVC is deleted;
PersistentVolumeClaim PV is automatically

recycled and ready
to be claimed and
re-used again

Figure 6.9 The lifespan of a PersistentVolume, PersistentVolumeClaims, and pods using them

6.6

A PersistentVolume only supports the Retain or Delete policies. Other Persistent-
Volume types may or may not support each of these options, so before creating your
own PersistentVolume, be sure to check what reclaim policies are supported for the
specific underlying storage you’ll use in the volume.

TIP You can change the PersistentVolume reclaim policy on an existing
PersistentVolume. For example, if it’s initially set to Delete, you can easily
change it to Retain to prevent losing valuable data.

Dynamic provisioning of PersistentVolumes

You've seen how using PersistentVolumes and PersistentVolumeClaims makes it easy
to obtain persistent storage without the developer having to deal with the actual stor-
age technology used underneath. But this still requires a cluster administrator to pro-
vision the actual storage up front. Luckily, Kubernetes can also perform this job
automatically through dynamic provisioning of PersistentVolumes.

The cluster admin, instead of creating PersistentVolumes, can deploy a Persistent-
Volume provisioner and define one or more StorageClass objects to let users choose
what type of PersistentVolume they want. The users can refer to the StorageClass in
their PersistentVolumeClaims and the provisioner will take that into account when
provisioning the persistent storage.

NOTE Similar to PersistentVolumes, StorageClass resources aren’t namespaced.

Kubernetes includes provisioners for the most popular cloud providers, so the admin-
istrator doesn’t always need to deploy a provisioner. But if Kubernetes is deployed
on-premises, a custom provisioner needs to be deployed.



6.6.1

6.6.2

Dynamic provisioning of PersistentVolumes 185

Instead of the administrator pre-provisioning a bunch of PersistentVolumes, they
need to define one or two (or more) StorageClasses and let the system create a new
PersistentVolume each time one is requested through a PersistentVolumeClaim. The
great thing about this is that it’s impossible to run out of PersistentVolumes (obviously,
you can run out of storage space).

Defining the available storage types through StorageClass
resources

Before a user can create a PersistentVolumeClaim, which will result in a new Persistent-
Volume being provisioned, an admin needs to create one or more StorageClass
resources. Let’s look at an example of one in the following listing.

Listing 6.14 A StorageClass definition: storageclass-fast-gcepd.yaml

apiVersion: storage.k8s.io/vl
kind: StorageClass

metadata:

name: fast The volume plugin to
provisioner: kubernetes.io/gce-pd 4—————{ use for provisioning
parameters: the PersistentVolume

type: pd-ssd The parameters passed

zone: europe-westl-b to the provisioner

NOTE If using Minikube, deploy the file storageclass-fast-hostpath.yaml.

The StorageClass resource specifies which provisioner should be used for provision-
ing the PersistentVolume when a PersistentVolumeClaim requests this StorageClass.
The parameters defined in the StorageClass definition are passed to the provisioner
and are specific to each provisioner plugin.

The StorageClass uses the Google Compute Engine (GCE) Persistent Disk (PD)
provisioner, which means it can be used when Kubernetes is running in GCE. For
other cloud providers, other provisioners need to be used.

Requesting the storage class in a PersistentVolumeClaim

After the StorageClass resource is created, users can refer to the storage class by name
in their PersistentVolumeClaims.

CREATING A PVC DEFINITION REQUESTING A SPECIFIC STORAGE CLASS
You can modify your mongodb-pvc to use dynamic provisioning. The following listing
shows the updated YAML definition of the PVC.

Listing 6.15 A PVC with dynamic provisioning: mongodb-pvc-dp.yaml

apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: mongodb-pvc



186

CHAPTER 6 Volumes: attaching disk storage to containers

spec:
storageClassName: fast TmsPVCrequeﬂsthe
resources: 47 custom storage class.
requests:
storage: 100Mi
accessModes:
- ReadWriteOnce

Apart from specifying the size and access modes, your PersistentVolumeClaim now
also specifies the class of storage you want to use. When you create the claim, the
PersistentVolume is created by the provisioner referenced in the fast StorageClass
resource. The provisioner is used even if an existing manually provisioned Persistent-
Volume matches the PersistentVolumeClaim.

NOTE If you reference a non-existing storage class in a PVC, the provisioning
of the PV will fail (you’ll see a ProvisioningFailed event when you use
kubectl describe on the PVC).

EXAMINING THE CREATED PVC AND THE DYNAMICALLY PROVISIONED PV
Next you’ll create the PVC and then use kubectl get to see it:
$ kubectl get pvc mongodb-pvc

NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS
mongodb-pvc Bound pvc-le6bc048 1Gi RWO fast

The VOLUME column shows the PersistentVolume that’s bound to this claim (the actual
name is longer than what’s shown above). You can try listing PersistentVolumes now to
see that a new PV has indeed been created automatically:

$ kubectl get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS STORAGECLASS
mongodb-pv 1G1 RWO, ROX Retain Released
pvc-le6bc048 1G1i RWO Delete Bound fast

NOTE Only pertinent columns are shown.

You can see the dynamically provisioned PersistentVolume. Its capacity and access
modes are what you requested in the PVC. Its reclaim policy is Delete, which means
the PersistentVolume will be deleted when the PVC is deleted. Beside the PV, the pro-
visioner also provisioned the actual storage. Your fast StorageClass is configured to
use the kubernetes.io/gce-pd provisioner, which provisions GCE Persistent Disks.
You can see the disk with the following command:

$ gcloud compute disks list

NAME ZONE SIZE_GB TYPE STATUS
gke-kubia-dyn-pvc-1le6bc048 europe-westl-d 1 pd-ssd READY
gke-kubia-default-pool-71df europe-westl-d 100 pd-standard READY
gke-kubia-default-pool-79cd europe-westl-d 100 pd-standard READY
gke-kubia-default-pool-blc4 europe-westl-d 100 pd-standard READY

mongodb europe-westl-d 1 pd-standard READY



6.6.3

Dynamic provisioning of PersistentVolumes 187

As you can see, the first persistent disk’s name suggests it was provisioned dynamically
and its type shows it’s an SSD, as specified in the storage class you created earlier.

UNDERSTANDING HOW TO USE STORAGE CLASSES

The cluster admin can create multiple storage classes with different performance or
other characteristics. The developer then decides which one is most appropriate for
each claim they create.

The nice thing about StorageClasses is the fact that claims refer to them by
name. The PVC definitions are therefore portable across different clusters, as long
as the StorageClass names are the same across all of them. To see this portability
yourself, you can try running the same example on Minikube, if you’ve been using
GKE up to this point. As a cluster admin, you’ll have to create a different storage
class (but with the same name). The storage class defined in the storageclass-fast-
hostpath.yaml file is tailor-made for use in Minikube. Then, once you deploy the stor-
age class, you as a cluster user can deploy the exact same PVC manifest and the exact
same pod manifest as before. This shows how the pods and PVCs are portable across
different clusters.

Dynamic provisioning without specifying a storage class

As we’ve progressed through this chapter, attaching persistent storage to pods has
become ever simpler. The sections in this chapter reflect how provisioning of storage
has evolved from early Kubernetes versions to now. In this final section, we’ll look at
the latest and simplest way of attaching a PersistentVolume to a pod.

LISTING STORAGE CLASSES

When you created your custom storage class called fast, you didn’t check if any exist-
ing storage classes were already defined in your cluster. Why don’t you do that now?
Here are the storage classes available in GKE:

$ kubectl get sc

NAME TYPE
fast kubernetes.io/gce-pd
standard (default) kubernetes.io/gce-pd

NOTE We’re using sc as shorthand for storageclass.

Beside the fast storage class, which you created yourself, a standard storage class
exists and is marked as default. You’ll learn what that means in a moment. Let’s list the
storage classes available in Minikube, so we can compare:

$ kubectl get sc

NAME TYPE
fast k8s.io/minikube-hostpath
standard (default) k8s.io/minikube-hostpath

Again, the fast storage class was created by you and a default standard storage class
exists here as well. Comparing the TYPE columns in the two listings, you see GKE is



188

CHAPTER 6 Volumes: attaching disk storage to containers

using the kubernetes.io/gce-pd provisioner, whereas Minikube is using k8s.io/
minikube-hostpath.

EXAMINING THE DEFAULT STORAGE CLASS
You're going to use kubectl get to see more info about the standard storage class in a
GKE cluster, as shown in the following listing.

Listing 6.16 The definition of the standard storage class on GKE

$ kubectl get sc standard -o yaml

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata: This annotation
annotations: marks the storage

storageclass.beta.kubernetes.io/is-default-class: "true" class as default.

creationTimestamp: 2017-05-16T15:24:117
labels:
addonmanager .kubernetes.io/mode: EnsureExists
kubernetes.io/cluster-service: "true"
name: standard
resourceVersion: "180"
selfLink: /apis/storage.k8s.io/vl/storageclassesstandard
uid: b6498511-3a4b-11e7-ba2c-42010a840014
parameters: ‘ The type parameter is used by the provisioner
type: pd-standard to know what type of GCE PD to create.
provisioner: kubernetes.io/gce-pd
Q—‘ The GCE Persistent Disk provisioner
is used to provision PVs of this class.

If you look closely toward the top of the listing, the storage class definition includes an
annotation, which makes this the default storage class. The default storage class is
what’s used to dynamically provision a PersistentVolume if the PersistentVolumeClaim
doesn’t explicitly say which storage class to use.

CREATING A PERSISTENTVOLUMECLAIM WITHOUT SPECIFYING A STORAGE CLASS

You can create a PVC without specifying the storageClassName attribute and (on
Google Kubernetes Engine) a GCE Persistent Disk of type pd-standard will be provi-
sioned for you. Try this by creating a claim from the YAML in the following listing.

Listing 6.17 PVC with no storage class defined: mongodb-pvc-dp-nostorageclass.yaml

apivVersion: vl
kind: PersistentVolumeClaim

metadata:
name: mongodb-pvc2
spec:
resources: You’re not specifying
requests: the storageClassName
storage: 100Mi attribute (unlike earlier
accessModes: examples).

- ReadWriteOnce



Dynamic provisioning of PersistentVolumes 189

This PVC definition includes only the storage size request and the desired access
modes, but no storage class. When you create the PVC, whatever storage class is
marked as default will be used. You can confirm that’s the case:

$ kubectl get pvc mongodb-pvc2
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS
mongodb-pvc2 Bound pvc-95a5ecl2 1Gi RWO standard

$ kubectl get pv pvc-95a5ecl2
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS STORAGECLASS
pvc-95a5ecl2 1Gi RWO Delete Bound standard

$ gcloud compute disks list
NAME ZONE SIZE _GB TYPE STATUS
gke-kubia-dyn-pvc-95a5ecl2 europe-westl-d 1 pd-standard READY

FORCING A PERSISTENTVOLUMECLAIM TO BE BOUND TO ONE OF THE PRE-PROVISIONED
PERSISTENTVOLUMES

This finally brings us to why you set storageClassName to an empty string in listing 6.11
(when you wanted the PVC to bind to the PV you’d provisioned manually). Let me
repeat the relevant lines of that PVC definition here:

Specifying an empty string as the storage class
name ensures the PVC binds to a pre-provisioned
PV instead of dynamically provisioning a new one.

kind: PersistentVolumeClaim
spec:
storageClassName: ""

If you hadn’t set the storageClassName attribute to an empty string, the dynamic vol-
ume provisioner would have provisioned a new PersistentVolume, despite there being
an appropriate pre-provisioned PersistentVolume. At that point, I wanted to demon-
strate how a claim gets bound to a manually pre-provisioned PersistentVolume. I didn’t
want the dynamic provisioner to interfere.

TIP Explicitly set storageClassName to "" if you want the PVC to use a pre-
provisioned PersistentVolume.

UNDERSTANDING THE COMPLETE PICTURE OF DYNAMIC PERSISTENTVOLUME PROVISIONING
This brings us to the end of this chapter. To summarize, the best way to attach per-
sistent storage to a pod is to only create the PVC (with an explicitly specified storage-
ClassName if necessary) and the pod (which refers to the PVC by name). Everything
else is taken care of by the dynamic PersistentVolume provisioner.

To get a complete picture of the steps involved in getting a dynamically provi-
sioned PersistentVolume, examine figure 6.10.



190

Admin

CHAPTER 6 Volumes: attaching disk storage to containers

1. Cluster admin sets up a PersistentVolume F—

isi i ’ ersisten
provisioner (if one’s not already deployed) Volume . Actual
provisioner Volume storage

Storage ’
2. Admin creates one or

User

Class

more StorageClasses
and marks one as the
default (it may already
exist)

mm e

3. User creates a PVC referencing one of the
StorageClasses (or none to use the default)

4. Kubernetes looks up the
StorageClass and the provisioner

to provision a new PV based on the
PVC'’s requested access mode and
storage size and the parameters

in the StorageClass

\( )/6.

Figure 6.10 The complete picture of dynamic provisioning of PersistentVolumes

6.7

a volume referencing the

PVC by name el

Summary

Persistent
VolumeClaim

Volume [T
User creates a pod with -

5. Provisioner provisions the
actual storage, creates
referenced in it and asks the provisioner a PersistentVolume, and

binds it to the PVC

This chapter has shown you how volumes are used to provide either temporary or per-
sistent storage to a pod’s containers. You’ve learned how to

Create a multi-container pod and have the pod’s containers operate on the
same files by adding a volume to the pod and mounting it in each container
Use the emptyDir volume to store temporary, non-persistent data

Use the gitRepo volume to easily populate a directory with the contents of a Git
repository at pod startup

Use the hostPath volume to access files from the host node

Mount external storage in a volume to persist pod data across pod restarts
Decouple the pod from the storage infrastructure by using PersistentVolumes
and PersistentVolumeClaims

Have PersistentVolumes of the desired (or the default) storage class dynami-
cally provisioned for each PersistentVolumeClaim

Prevent the dynamic provisioner from interfering when you want the Persistent-
VolumeClaim to be bound to a pre-provisioned PersistentVolume

In the next chapter, you’ll see what mechanisms Kubernetes provides to deliver con-
figuration data, secret information, and metadata about the pod and container to the
processes running inside a pod. This is done with the special types of volumes we’ve

mentioned in this chapter, but not yet explored.



7.1

ConfigMaps and Secrets:
configuring applications

This chapter covers

Changing the main process of a container
Passing command-line options to the app

Setting environment variables exposed to the app
Configuring apps through ConfigMaps

Passing sensitive information through secrets

Up to now you haven’t had to pass any kind of configuration data to the apps you've
run in the exercises in this book. Because almost all apps require configuration (set-
tings that differ between deployed instances, credentials for accessing external sys-
tems, and so on), which shouldn’t be baked into the built app itself, let’s see how to
pass configuration options to your app when running it in Kubernetes.

Configuring containerized applications

Before we go over how to pass configuration data to apps running in Kubernetes,
let’s look at how containerized applications are usually configured.

If you skip the fact that you can bake the configuration into the application
itself, when starting development of a new app, you usually start off by having the

191



192

7.2

CHAPTER 7 ConfigMaps and Secrets: configuring applications

app configured through command-line arguments. Then, as the list of configuration
options grows, you can move the configuration into a config file.

Another way of passing configuration options to an application that’s widely popu-
lar in containerized applications is through environment variables. Instead of having
the app read a config file or command-line arguments, the app looks up the value of a
certain environment variable. The official MySQL container image, for example, uses
an environment variable called MYSQL_ROOT_PASSWORD for setting the password for the
root super-user account.

But why are environment variables so popular in containers? Using configuration
files inside Docker containers is a bit tricky, because you’d have to bake the config file
into the container image itself or mount a volume containing the file into the con-
tainer. Obviously, baking files into the image is similar to hardcoding configuration
into the source code of the application, because it requires you to rebuild the image
every time you want to change the config. Plus, everyone with access to the image can
see the config, including any information that should be kept secret, such as creden-
tials or encryption keys. Using a volume is better, but still requires you to make sure
the file is written to the volume before the container is started.

If you’ve read the previous chapter, you might think of using a gitRepo volume as
a configuration source. That’s not a bad idea, because it allows you to keep the config
nicely versioned and enables you to easily rollback a config change if necessary. But a
simpler way allows you to put the configuration data into a top-level Kubernetes
resource and store it and all the other resource definitions in the same Git repository
or in any other file-based storage. The Kubernetes resource for storing configuration
data is called a ConfigMap. We’ll learn how to use it in this chapter.

Regardless if you're using a ConfigMap to store configuration data or not, you can
configure your apps by

Passing command-line arguments to containers
Setting custom environment variables for each container

Mounting configuration files into containers through a special type of volume

We’ll go over all these options in the next few sections, but before we start, let’s look
at config options from a security perspective. Though most configuration options
don’t contain any sensitive information, several can. These include credentials, pri-
vate encryption keys, and similar data that needs to be kept secure. This type of infor-
mation needs to be handled with special care, which is why Kubernetes offers
another type of first-class object called a Secret. We’ll learn about it in the last part of
this chapter.

Passing command-line arguments to containers

In all the examples so far, you've created containers that ran the default command
defined in the container image, but Kubernetes allows overriding the command as
part of the pod’s container definition when you want to run a different executable



7.2.1

Passing command-line arguments to containers 193

instead of the one specified in the image, or want to run it with a different set of com-
mand-line arguments. We’ll look at how to do that now.
Defining the command and arguments in Docker

The first thing I need to explain is that the whole command that gets executed in the
container is composed of two parts: the command and the arguments.

UNDERSTANDING ENTRYPOINT AND CMD
In a Dockerfile, two instructions define the two parts:

ENTRYPOINT defines the executable invoked when the container is started.
CMD specifies the arguments that get passed to the ENTRYPOINT.

Although you can use the CMD instruction to specify the command you want to execute
when the image is run, the correct way is to do it through the ENTRYPOINT instruction
and to only specify the CMD if you want to define the default arguments. The image can
then be run without specifying any arguments

$ docker run <image>

or with additional arguments, which override whatever’s set under CMD in the Dockerfile:

$ docker run <image> <arguments>

UNDERSTANDING THE DIFFERENCE BETWEEN THE SHELL AND EXEC FORMS
But there’s more. Both instructions support two different forms:

shell form—For example, ENTRYPOINT node app.js.
exec form—For example, ENTRYPOINT ["node", "app.Jjs"].

The difference is whether the specified command is invoked inside a shell or not.
In the kubia image you created in chapter 2, you used the exec form of the ENTRY-
POINT instruction:

ENTRYPOINT ["node", "app.js"]

This runs the node process directly (not inside a shell), as you can see by listing the
processes running inside the container:

$ docker exec 4675d ps x

PID TTY STAT TIME COMMAND
172 Ssl 0:00 node app.js
12 2 Rs 0:00 ps x

If you’d used the shell form (ENTRYPOINT node app.js), these would have been the
container’s processes:
$ docker exec -it e4bad ps x

PID TTY STAT TIME COMMAND
17 Ss 0:00 /bin/sh -c node app.js



194

CHAPTER 7  ConfigMaps and Secrets: configuring applications

7 ? Sl 0:00 node app.js
13 7 Rs+ 0:00 ps x

As you can see, in that case, the main process (PID 1) would be the shell process
instead of the node process. The node process (PID 7) would be started from that
shell. The shell process is unnecessary, which is why you should always use the exec
form of the ENTRYPOINT instruction.

MAKING THE INTERVAL CONFIGURABLE IN YOUR FORTUNE IMAGE
Let’s modify your fortune script and image so the delay interval in the loop is configu-
rable. You’ll add an INTERVAL variable and initialize it with the value of the first com-
mand-line argument, as shown in the following listing.

Listing 7.1 Fortune script with interval configurable through argument: fortune-args/

fortuneloop.sh

#!/bin/bash
trap "exit" SIGINT
INTERVAL=$1
echo Configured to generate new fortune every $INTERVAL seconds
mkdir -p /var/htdocs
while
do
echo $(date) Writing fortune to /var/htdocs/index.html
/usr/games/fortune > /var/htdocs/index.html
sleep $INTERVAL
done

You’ve added or modified the lines in bold font. Now, you’ll modify the Dockerfile so
it uses the exec version of the ENTRYPOINT instruction and sets the default interval to
10 seconds using the CMD instruction, as shown in the following listing.

Listing 7.2 Dockerfile for the updated fortune image: fortune-args/Dockerfile

FROM ubuntu:latest The exec form of the

RUN apt-get update ; apt-get -y install fortune ENTRYPOINT instruction
ADD fortuneloop.sh /bin/fortuneloop.sh

ENTRYPOINT ["/bin/fortuneloop.sh"] The default argument
cMD ["10"] for the executable

You can now build and push the image to Docker Hub. This time, you’ll tag the image
as args instead of latest:

$ docker build -t docker.io/luksa/fortune:args .
$ docker push docker.io/luksa/fortune:args

You can test the image by running it locally with Docker:

$ docker run -it docker.io/luksa/fortune:args
Configured to generate new fortune every 10 seconds
Fri May 19 10:39:44 UTC 2017 Writing fortune to /var/htdocs/index.html



7.2.2

Passing command-line arguments to containers 195

NOTE You can stop the script with Control+C.

And you can override the default sleep interval by passing it as an argument:
$ docker run -it docker.io/luksa/fortune:args 15

Configured to generate new fortune every 15 seconds

Now that you’re sure your image honors the argument passed to it, let’s see how to use
itin a pod.

Overriding the command and arguments in Kubernetes

In Kubernetes, when specifying a container, you can choose to override both ENTRY -
POINT and CMD. To do that, you set the properties command and args in the container
specification, as shown in the following listing.

Listing 7.3 A pod definition specifying a custom command and arguments

kind: Pod
spec:
containers:

- image: some/image
command: ["/bin/command"]
args: ["argl", "arg2", "arg3"]

In most cases, you’ll only set custom arguments and rarely override the command
(except in general-purpose images such as busybox, which doesn’t define an ENTRY-
POINT at all).

NOTE The command and args fields can’t be updated after the pod is created.

The two Dockerfile instructions and the equivalent pod spec fields are shown in table 7.1.

Table 7.1 Specifying the executable and its arguments in Docker vs Kubernetes

Docker Kubernetes Description
ENTRYPOINT command The executable that’s executed inside the container
CMD args The arguments passed to the executable

RUNNING THE FORTUNE POD WITH A CUSTOM INTERVAL
To run the fortune pod with a custom delay interval, you'll copy your fortune-
pod.yaml into fortune-pod-args.yaml and modify it as shown in the following listing.

Listing 7.4 Passing an argument in the pod definition: fortune-pod-args.yaml

apiversion: vl
kind: Pod
metadata: You changed the

i
name: fortune2s pod’s name.


http://hub.docker.com

196

7.3

CHAPTER 7 ConfigMaps and Secrets: configuring applications

spec:
containers:
- image: luksa/fortune:args

args: ["2"]
name: html-generator
volumeMounts:

- name: html
mountPath: /var/htdocs

You added the args array to the container definition. Try creating this pod now. The
values of the array will be passed to the container as command-line arguments when it

IS run.

The array notation used in this listing is great if you have one argument or a few. If

Using fortune:args
instead of fortune:latest

This argument makes the
script generate a new fortune
every two seconds.

you have several, you can also use the following notation:

args:
- foo
- bar
- ll15ll

TIP You don’t need to enclose string values in quotations marks (but you

must enclose numbers).

Specifying arguments is one way of passing config
options to your containers through command-
line arguments. Next, you’ll see how to do it
through environment variables.

Setting environment variables for
a container

As I’'ve already mentioned, containerized appli-
cations often use environment variables as a
source of configuration options. Kubernetes
allows you to specify a custom list of environ-
ment variables for each container of a pod, as
shown in figure 7.1. Although it would be use-
ful to also define environment variables at the
pod level and have them be inherited by its
containers, no such option currently exists.

NOTE Like the container’s command and
arguments, the list of environment variables
also cannot be updated after the pod is created.

A\

Container A

Environment variables

FOO=BAR
ABC=123

Container B

Environment variables

FOO=FOOBAR
BAR=567

Pod

Figure 7.1 Environment variables can

be set per container.




7.3.1

Setting environment variables for a container 197
MAKING THE INTERVAL IN YOUR FORTUNE IMAGE CONFIGURABLE THROUGH AN ENVIRONMENT VARIABLE
Let’s see how to modify your fortuneloop.sh script once again to allow it to be config-

ured from an environment variable, as shown in the following listing.

Listing 7.5 Fortune script with interval configurable through env var: fortune-env/

fortuneloop.sh

#!/bin/bash
trap "exit" SIGINT
echo Configured to generate new fortune every S$INTERVAL seconds
mkdir -p /var/htdocs
while :
do
echo $(date) Writing fortune to /var/htdocs/index.html
/usr/games/fortune > /var/htdocs/index.html
sleep SINTERVAL
done

All you had to do was remove the row where the INTERVAL variable is initialized. Because
your “app” is a simple bash script, you didn’t need to do anything else. If the app was
written in Java you’d use System.getenv ("INTERVAL"), whereas in Node.JS you’d use
process.env. INTERVAL, and in Python you’d use os.environ[' INTERVAL'].

Specifying environment variables in a container definition

After building the new image (I've tagged it as luksa/fortune:env this time) and
pushing it to Docker Hub, you can run it by creating a new pod, in which you pass the
environment variable to the script by including it in your container definition, as
shown in the following listing.

Listing 7.6 Defining an environment variable in a pod: fortune-pod-env.yaml

kind: Pod
spec:
containers:
- image: luksa/fortune:env
env:
- name: INTERVAL
value: "30"
name: html-generator

Adding a single variable to
the environment variable list

As mentioned previously, you set the environment variable inside the container defini-
tion, not at the pod level.

NOTE Don’t forget that in each container, Kubernetes also automatically
exposes environment variables for each service in the same namespace. These
environment variables are basically auto-injected configuration.



198

7.3.2

7.3.3

74

74.1

CHAPTER 7 ConfigMaps and Secrets: configuring applications

Referring to other environment variables in a variable’s value

In the previous example, you set a fixed value for the environment variable, but you
can also reference previously defined environment variables or any other existing vari-
ables by using the $ (VAR) syntax. If you define two environment variables, the second
one can include the value of the first one as shown in the following listing.

Listing 7.7 Referring to an environment variable inside another one

env:
- name: FIRST VAR
value: "foo"

- name: SECOND_VAR
value: "$(FIRST VAR)bar"

In this case, the SECOND_VAR’s value will be "foobar". Similarly, both the command and
args attributes you learned about in section 7.2 can also refer to environment vari-
ables like this. You’ll use this method in section 7.4.5.

Understanding the drawback of hardcoding environment
variables

Having values effectively hardcoded in the pod definition means you need to have
separate pod definitions for your production and your development pods. To reuse
the same pod definition in multiple environments, it makes sense to decouple the
configuration from the pod descriptor. Luckily, you can do that using a ConfigMap
resource and using it as a source for environment variable values using the valueFrom
instead of the value field. You’ll learn about this next.

Decoupling configuration with a ConfigMap

The whole point of an app’s configuration is to keep the config options that vary
between environments, or change frequently, separate from the application’s source
code. If you think of a pod descriptor as source code for your app (and in microservices
architectures that’s what it really is, because it defines how to compose the individual
components into a functioning system), it’s clear you should move the configuration
out of the pod description.

Introducing ConfigMaps

Kubernetes allows separating configuration options into a separate object called a
ConfigMap, which is a map containing key/value pairs with the values ranging from
short literals to full config files.

An application doesn’t need to read the ConfigMap directly or even know that it
exists. The contents of the map are instead passed to containers as either environ-
ment variables or as files in a volume (see figure 7.2). And because environment



Decoupling configuration with a ConfigMap 199

variables can be referenced in command-line arguments using the $ (ENV_VAR) syn-
tax, you can also pass ConfigMap entries to processes as command-line arguments.

4 N

Environment variables
ConfigMap

keyl=valuel
key2=value2

——

configMap

volume

Figure 7.2 Pods use ConfigMaps
Pod through environment variables and
N J configMap volumes.

Sure, the application can also read the contents of a ConfigMap directly through the
Kubernetes REST API endpoint if needed, but unless you have a real need for this,
you should keep your app Kubernetes-agnostic as much as possible.

Regardless of how an app consumes a ConfigMap, having the config in a separate
standalone object like this allows you to keep multiple manifests for ConfigMaps with
the same name, each for a different environment (development, testing, QA, produc-
tion, and so on). Because pods reference the ConfigMap by name, you can use a dif-
ferent config in each environment while using the same pod specification across all of
them (see figure 7.3).

ConfigMaps created
from different manifests

Namespace: development / Namespace: production \4
ConfigMap: ConfigMap:
app-config app-config
Pod(s) Pod(s)
(contains (contains
development production
values) values)

Pods created from the
same pod manifests

Figure 7.3 Two different ConfigMaps with the same name used in different
environments



200

74.2

CHAPTER 7 ConfigMaps and Secrets: configuring applications

Creating a ConfigMap

Let’s see how to use a ConfigMap in one of your pods. To start with the simplest exam-
ple, you’ll first create a map with a single key and use it to fill the INTERVAL environment
variable from your previous example. You'll create the ConfigMap with the special
kubectl create configmap command instead of posting a YAML with the generic
kubectl create -f command.

USING THE KUBECTL CREATE CONFIGMAP COMMAND
You can define the map’s entries by passing literals to the kubectl command or you
can create the ConfigMap from files stored on your disk. Use a simple literal first:

$ kubectl create configmap fortune-config --from-literal=sleep-interval=25
configmap "fortune-config" created

NOTE ConfigMap keys must be a valid DNS subdomain (they may only con-
tain alphanumeric characters, dashes, underscores, and dots). They may
optionally include a leading dot.

This creates a ConfigMap called fortune-config with the single-entry sleep-interval
=25 (figure 7.4).

ConfigMap: fortune-config

Figure 7.4 The fortune-config
ConfigMap containing a single entry

| sleep-interval | 25

ConfigMaps usually contain more than one entry. To create a ConfigMap with multi-
ple literal entries, you add multiple --from-literal arguments:

$ kubectl create configmap myconfigmap
--from-literal=foo=bar --from-literal=bar=baz --from-literal=one=two

Let’s inspect the YAML descriptor of the ConfigMap you created by using the kubect1l
get command, as shown in the following listing.

Listing 7.8 A ConfigMap definition

$ kubectl get configmap fortune-config -o yaml The single entry
apiVersion: vl in this map
data:
sleep-interval: "25" This descriptor
kind: ConfigMap describes a ConfigMap.
metadata:
creationTimestamp: 2016-08-11T20:31:08% The name of this map
name: fortune-config q# (you’re referencing it
namespace: default by this name)

resourceVersion: "910025"
selfLink: /api/vl/namespaces/default/configmaps/fortune-config
uid: 88c4167e-6002-11e6-a50d-42010af00237



Decoupling configuration with a ConfigMap 201

Nothing extraordinary. You could easily have written this YAML yourself (you wouldn’t
need to specify anything but the name in the metadata section, of course) and posted
it to the Kubernetes API with the well-known

$ kubectl create -f fortune-config.yaml

CREATING A CONFIGIVIAP ENTRY FROM THE CONTENTS OF A FILE

ConfigMaps can also store coarse-grained config data, such as complete config files.
To do this, the kubectl create configmap command also supports reading files from
disk and storing them as individual entries in the ConfigMap:

$ kubectl create configmap my-config --from-file=config-file.conf

When you run the previous command, kubectl looks for the file config-file.conf in
the directory you run kubectl in. It will then store the contents of the file under the
key config-file.conf in the ConfigMap (the filename is used as the map key), but
you can also specify a key manually like this:

$ kubectl create configmap my-config --from-file=customkey=config-file.conf

This command will store the file’s contents under the key customkey. As with literals,
you can add multiple files by using the --from-file argument multiple times.

CREATING A CONFIGIVIAP FROM FILES IN A DIRECTORY
Instead of importing each file individually, you can even import all files from a file
directory:

$ kubectl create configmap my-config --from-file=/path/to/dir

In this case, kubectl will create an individual map entry for each file in the specified
directory, but only for files whose name is a valid ConfigMap key.

COMBINING DIFFERENT OPTIONS

When creating ConfigMaps, you can use a combination of all the options mentioned
here (note that these files aren’t included in the book’s code archive—you can create
them yourself if you’d like to try out the command):

A single file
$ kubectl create configmap my-config

--from-file=foo.json Afile stored under
a custom key

A whole directory

A literal value

--from-file=bar=foobar.conf
--from-file=config-opts/
--from-literal=some=thing <

Here, you've created the ConfigMap from multiple sources: a whole directory, a file,
another file (but stored under a custom key instead of using the filename as the key),
and a literal value. Figure 7.5 shows all these sources and the resulting ConfigMap.



202 CHAPTER 7  ConfigMaps and Secrets: configuring applications

foo.json

config-opts directory
true 100
--from-file=foo.json
A
i
i
i ConfigMap: my-config
i 7 debug repeat
| A
E Key Value |
i J
*~-1--a foo. json {
L foo: bar
baz: 5
}
--from-file=config-opts/
e P bar abc
debug =---"i| true o

repeat =--- | 100

e

some thing ~
L)
\
i
i
v
--from-file=bar=foobar.conf --from-literal=some=thing
abc R Literal
some=thing
foobar.conf

Figure 7.5 Creating a ConfigMap from individual files, a directory, and a literal value

7.4.3 Passing a ConfigMap entry to a container as an environment
variable

How do you now get the values from this map into a pod’s container? You have three
options. Let’s start with the simplest—setting an environment variable. You’ll use the
valueFron field I mentioned in section 7.3.3. The pod descriptor should look like
the following listing.

Listing 7.9 Pod with env var from a config map: fortune-pod-env-configmap.yaml

apiVersion: vl
kind: Pod



Decoupling configuration with a ConfigMap 203

metadata:
name: fortune-env-from-configmap
spec:
containers:
- image: luksa/fortune:env ‘ You’re setting the environment
env: /| variable called INTERVAL.
- name: INTERVAL }
valueFrom: ‘ Instead of setting a fixed value, you're
configMapKeyRef : initializing it from a ConfigMap key.

name: fortune-config

key: sleep-interval
The name of the ConfigMap

. . . you're referencing
You're setting the variable to whatever is

stored under this key in the ConfigMap.

You defined an environment variable called INTERVAL and set its value to whatever is
stored in the fortune-config ConfigMap under the key sleep-interval. When the
process running in the html-generator container reads the INTERVAL environment
variable, it will see the value 25 (shown in figure 7.6).

4 N

Container: web-server

. ConfigMap: fortune-config
Container: html-generator

|sleep—interval | 25 |
T

)

Environment variables
INTERVAL=25

fortuneloop.sh
process

Pod Figure 7.6 Passing a ConfigMap entry as
(N ~/  an environment variable to a container

REFERENCING NON-EXISTING CONFIGIVIAPS IN A POD

You might wonder what happens if the referenced ConfigMap doesn’t exist when you
create the pod. Kubernetes schedules the pod normally and tries to run its containers.
The container referencing the non-existing ConfigMap will fail to start, but the other
container will start normally. If you then create the missing ConfigMap, the failed con-
tainer is started without requiring you to recreate the pod.

NOTE You can also mark a reference to a ConfigMap as optional (by setting
configMapKeyRef .optional: true). In that case, the container starts even if
the ConfigMap doesn’t exist.

This example shows you how to decouple the configuration from the pod specifica-
tion. This allows you to keep all the configuration options closely together (even for
multiple pods) instead of having them splattered around the pod definition (or dupli-
cated across multiple pod manifests).



204

7.4.4

74.5

CHAPTER 7 ConfigMaps and Secrets: configuring applications

Passing all entries of a ConfigMap as environment variables
at once

When your ConfigMap contains more than just a few entries, it becomes tedious and
error-prone to create environment variables from each entry individually. Luckily,
Kubernetes version 1.6 provides a way to expose all entries of a ConfigMap as environ-
ment variables.

Imagine having a ConfigMap with three keys called F0O, BAR, and FOO-BAR. You can
expose them all as environment variables by using the envFrom attribute, instead of
env the way you did in previous examples. The following listing shows an example.

Listing 7.10 Pod with env vars from all entries of a ConfigMap

spec:

containers: Using envFrom instead of env

- image: some-image All environment variables will

envFrom: be prefixed with CONFIG_.
- prefix: CONFIG_ N

configMapRef : ’ Referencing the ConfigMap
name: my-config-map called my-config-map

As you can see, you can also specify a prefix for the environment variables (CONFIG_ in
this case). This results in the following two environment variables being present inside
the container: CONFIG FOO and CONFIG BAR.

NOTE The prefix is optional, so if you omit it the environment variables will
have the same name as the keys.

Did you notice I said two variables, but earlier, I said the ConfigMap has three entries
(FOO, BAR, and FOO-BAR)? Why is there no environment variable for the FOO-BAR
ConfigMap entry?

The reason is that CONFIG FOO-BAR isn’t a valid environment variable name
because it contains a dash. Kubernetes doesn’t convert the keys in any way (it doesn’t
convert dashes to underscores, for example). If a ConfigMap key isn’t in the proper
format, it skips the entry (but it does record an event informing you it skipped it).

Passing a ConfigMap entry as a command-line argument

Now, let’s also look at how to pass values from a ConfigMap as arguments to the main
process running in the container. You can’t reference ConfigMap entries directly in
the pod. spec.containers.args field, but you can first initialize an environment vari-
able from the ConfigMap entry and then refer to the variable inside the arguments as
shown in figure 7.7.

Listing 7.11 shows an example of how to do this in the YAML.



7.4.6

Decoupling configuration with a ConfigMap 205

Container: web-server

i ConfigMap: fortune-config
Container: html-generator

|sleep—interval | 25 |
T

)

Environment variables

fortuneloop.sh $(INTERVAL)

INTERVAL=25

Pod
N J

Figure 7.7 Passing a ConfigMap entry as a command-line argument

Listing 7.11 Using ConfigMap entries as arguments: fortune-pod-args-configmap.yami

apiVersion: vl

kind: Pod
metadata:
name: fortune-args-from-configmap Uﬁngthehnagethattakesthe
spec: interval from the first argument,
containers: not from an environment variable
- image: luksa/fortune:args
env:
- name: INT?RVAL DeﬁMngthe
valueFrom: . .
conf igMapKeyRef : environment variable

. exactly as before
name: fortune-config

key: sleep-interval

args: ["$(INTERVAL)"]
Referencing the environment
variable in the argument

You defined the environment variable exactly as you did before, but then you used the
$ (ENV_VARIABLE NAME) syntax to have Kubernetes inject the value of the variable into
the argument.

Using a configMap volume to expose ConfigMap entries as files

Passing configuration options as environment variables or command-line arguments
is usually used for short variable values. A ConfigMap, as you’ve seen, can also con-
tain whole config files. When you want to expose those to the container, you can use
one of the special volume types I mentioned in the previous chapter, namely a
configMap volume.

A configMap volume will expose each entry of the ConfigMap as a file. The pro-
cess running in the container can obtain the entry’s value by reading the contents of
the file.



206

CHAPTER 7 ConfigMaps and Secrets: configuring applications

Although this method is mostly meant for passing large config files to the con-
tainer, nothing prevents you from passing short single values this way.

CREATING THE CONFIGIVIAP

Instead of modifying your fortuneloop.sh script once again, you’ll now try a different
example. You’ll use a config file to configure the Nginx web server running inside the
fortune pod’s web-server container. Let’s say you want your Nginx server to compress
responses it sends to the client. To enable compression, the config file for Nginx
needs to look like the following listing.

Listing 7.12 An Nginx config with enabled gzip compression: my-nginx-config.conf

server {
listen 80;
server_name www.kubia-example.com;
gzip on; This enables gzip compression
gzip types text/plain application/xml; for plain text and XML files.

location /
root /usr/share/nginx/html;
index index.html index.htm;

Now delete your existing fortune-config ConfigMap with kubectl delete config-
map fortune-config, so that you can replace it with a new one, which will include the
Nginx config file. You’ll create the ConfigMap from files stored on your local disk.

Create a new directory called configmap-files and store the Nginx config from the
previous listing into configmap-files/my-nginx-config.conf. To make the ConfigMap
also contain the sleep-interval entry, add a plain text file called sleep-interval to the
same directory and store the number 25 in it (see figure 7.8).

configmap-files/

server { 25
listen 80;
server name www.kubia...

my-nginx-config.conf sleep-interval Figure 7.8 The contents of the

configmap-files directory and its files

Now create a ConfigMap from all the files in the directory like this:

$ kubectl create configmap fortune-config --from-file=configmap-files
configmap "fortune-config" created



Decoupling configuration with a ConfigMap 207

The following listing shows what the YAML of this ConfigMap looks like.

Listing 7.13 YAMIL definition of a config map created from a file

$ kubectl get configmap fortune-config -o yaml
apiVersion: vl

data:
my-nginx-config.conf: |
server {
listen 80;
server_name www.kubia-example.com;
gzip on; The entry holding the
gzip types text/plain application/xml; Nginx config file’s

contents
location / {
root /usr/share/nginx/html;
index index.html index.htm;
}
1

sleep-interval: |
25
kind: ConfigMap

The sleep-interval entry

NOTE The pipeline character after the colon in the first line of both entries
signals that a literal multi-line value follows.

The ConfigMap contains two entries, with keys corresponding to the actual names
of the files they were created from. You’ll now use the ConfigMap in both of your
pod’s containers.

UsING THE CONFIGIVIAP'S ENTRIES IN A VOLUME

Creating a volume populated with the contents of a ConfigMap is as easy as creating
a volume that references the ConfigMap by name and mounting the volume in a
container. You already learned how to create volumes and mount them, so the only
thing left to learn is how to initialize the volume with files created from a Config-
Map’s entries.

Nginx reads its config file from /etc/nginx/nginx.conf. The Nginx image
already contains this file with default configuration options, which you don’t want
to override, so you don’t want to replace this file as a whole. Luckily, the default
config file automatically includes all .conf files in the /etc/nginx/conf.d/ subdirec-
tory as well, so you should add your config file in there. Figure 7.9 shows what you
want to achieve.

The pod descriptor is shown in listing 7.14 (the irrelevant parts are omitted, but
you’ll find the complete file in the code archive).



208 CHAPTER 7  ConfigMaps and Secrets: configuring applications

Container: web-server

Filesystem
/

L ete/ ConfigMap: fortune-config
Lngmﬂ _
[ Volume:

config my-nginx-config.conf | server {

.

Container: html-generator

Pod
N J

Figure 7.9 Passing ConfigMap entries to a pod as files in a volume

Listing 7.14 A pod with ConfigMap entries mounted as files: fortune-pod-c

volume.yaml

apivVersion: vl
kind: Pod
metadata:

name: fortune-configmap-volume
spec:

containers:

- image: nginx:alpine

name: web-server

volumeMounts: .
You’re mounting the

- name: config configMap volume at

mountPath: /etc/nginx/conf.d this location.
readOnly: true
volumes:
- name: config
configMap: The volume refers to your
name: fortune-config fortune-config ConfigMap.

This pod definition includes a volume, which references your fortune-config
ConfigMap. You mount the volume into the /etc/nginx/conf.d directory to make
Nginx use it.

VERIFYING NGINX IS USING THE MOUNTED CONFIG FILE

The web server should now be configured to compress the responses it sends. You can
verify this by enabling port-forwarding from localhost:8080 to the pod’s port 80 and
checking the server’s response with curl, as shown in the following listing.



Decoupling configuration with a ConfigMap 209

Listing 7.15 Seeing if nginx responses have compression enabled

$ kubectl port-forward fortune-configmap-volume 8080:80 &
Forwarding from 127.0.0.1:8080 -> 80

Forwarding from [::1]:8080 -> 80

$ curl -H "Accept-Encoding: gzip" -I localhost:8080
HTTP/1.1 200 OK

Server: nginx/1.11.1

Date: Thu, 18 Aug 2016 11:52:57 GMT

Content-Type: text/html

Last-Modified: Thu, 18 Aug 2016 11:52:55 GMT

Connection: keep-alive X
ETag: W/"57b5a197-37" This shows the response

Content-Encoding: gzip is compressed.

EXAMINING THE MOUNTED CONFIGIVIAP VOLUME’S CONTENTS

The response shows you achieved what you wanted, but let’s look at what’s in the
/etc/nginx/conf.d directory now:

$ kubectl exec fortune-configmap-volume -c web-server ls /etc/nginx/conf.d

my-nginx-config.conf
sleep-interval

Both entries from the ConfigMap have been added as files to the directory. The
sleep-interval entry is also included, although it has no business being there,
because it’s only meant to be used by the fortuneloop container. You could create
two different ConfigMaps and use one to configure the fortuneloop container and
the other one to configure the web-server container. But somehow it feels wrong to
use multiple ConfigMaps to configure containers of the same pod. After all, having
containers in the same pod implies that the containers are closely related and should
probably also be configured as a unit.

EXPOSING CERTAIN CONFIGIVIAP ENTRIES IN THE VOLUME
Luckily, you can populate a configMap volume with only part of the ConfigMap’s
entries—in your case, only the my-nginx-config.conf entry. This won’t affect the
fortuneloop container, because you're passing the sleep-interval entry to it through
an environment variable and not through the volume.

To define which entries should be exposed as files in a configMap volume, use the
volume’s items attribute as shown in the following listing.

Listing 7.16 A pod with a specific ConfigMap entry mounted into a file directory:

fortune-pod-configmap-volume-with-items.yaml

volumes: Selecting which entries to include
- name: config in the volume by listing them
configMap: , You want the entry
name: fortune-config under this key included.
items:

The entry’s value should

- key: my-nginx-config.conf > "
be stored in this file.

path: gzip.conf



210

CHAPTER 7 ConfigMaps and Secrets: configuring applications

When specifying individual entries, you need to set the filename for each individual
entry, along with the entry’s key. If you run the pod from the previous listing, the
/etc/nginx/conf.d directory is kept nice and clean, because it only contains the
gzip.conf file and nothing else.

UNDERSTANDING THAT MOUNTING A DIRECTORY HIDES EXISTING FILES IN THAT DIRECTORY

There’s one important thing to discuss at this point. In both this and in your previous
example, you mounted the volume as a directory, which means you’ve hidden any files
that are stored in the /etc/nginx/conf.d directory in the container image itself.

This is generally what happens in Linux when you mount a filesystem into a non-
empty directory. The directory then only contains the files from the mounted filesys-
tem, whereas the original files in that directory are inaccessible for as long as the
filesystem is mounted.

In your case, this has no terrible side effects, but imagine mounting a volume to
the /etc directory, which usually contains many important files. This would most likely
break the whole container, because all of the original files that should be in the /etc
directory would no longer be there. If you need to add a file to a directory like /etc,
you can’t use this method at all.

IVIOUNTING INDIVIDUAL CONFIGIVIAP ENTRIES AS FILES WITHOUT HIDING OTHER FILES IN THE DIRECTORY
Naturally, you’re now wondering how to add individual files from a ConfigMap into
an existing directory without hiding existing files stored in it. An additional subPath
property on the volumeMount allows you to mount either a single file or a single direc-
tory from the volume instead of mounting the whole volume. Perhaps this is easier to
explain visually (see figure 7.10).

Say you have a configMap volume containing a myconfig.conf file, which you want
to add to the /etc directory as someconfig.conf. You can use the subPath property to
mount it there without affecting any other files in that directory. The relevant part of
the pod definition is shown in the following listing.

e N
Pod
—
M~
Container configMap
volume ConfigMap: app-config
Filesystem
L myconfig. conf Contents
etc/ j j of the file
L someconfig.conf myconfig.conf
L existingfile1 another-file Contents
L existingfile2 of the file
g
T
another-file
-
N / \ J
existingfilel Only myconfig.conf is mounted another-file isn’t
and existingfile2 into the container (yet under a mounted into the
aren’t hidden. different filename). container.

Figure 7.10 Mounting a single file from a volume



74.7

Decoupling configuration with a ConfigMap 211

Listing 7.17 A pod with a specific config map entry mounted into a specific file

spec: . .
pcontainers . You’re mounting into
. ) ) a file, not a directory.
- image: some/image
volumeMounts:

, .
mountPath: /etc/someconfig.conf vohnm,youreonh:nounﬂng

- name: myvolume Instead of mounting the whole
subPath: myconfig.conf the myconfig.conf entry.

The subPath property can be used when mounting any kind of volume. Instead of
mounting the whole volume, you can mount part of it. But this method of mounting
individual files has a relatively big deficiency related to updating files. You’ll learn
more about this in the following section, but first, let’s finish talking about the initial
state of a configMap volume by saying a few words about file permissions.

SETTING THE FILE PERMISSIONS FOR FILES IN A CONFIGMAP VOLUME

By default, the permissions on all files in a configMap volume are set to 644 (-rw-r—r--).
You can change this by setting the defaultMode property in the volume spec, as shown
in the following listing.

Listing 7.18 Setting file permissions: fortune-pod-configmap-volume-defaultMode.yaml

volumes:
- name: config
configMap:
name: fortune-config QJ This sets the permissions
defaultMode: "6600" for all files to -rw-rw------ .

Although ConfigMaps should be used for non-sensitive configuration data, you may
want to make the file readable and writable only to the user and group the file is
owned by, as the example in the previous listing shows.

Updating an app’s config without having to restart the app

We’ve said that one of the drawbacks of using environment variables or command-line
arguments as a configuration source is the inability to update them while the pro-
cess is running. Using a ConfigMap and exposing it through a volume brings the
ability to update the configuration without having to recreate the pod or even restart
the container.

When you update a ConfigMap, the files in all the volumes referencing it are
updated. It’s then up to the process to detect that they’ve been changed and reload
them. But Kubernetes will most likely eventually also support sending a signal to the
container after updating the files.

WARNING Be aware that as I'm writing this, it takes a surprisingly long time
for the files to be updated after you update the ConfigMap (it can take up to
one whole minute).



212

CHAPTER 7 ConfigMaps and Secrets: configuring applications

EDITING A CONFIGMAP

Let’s see how you can change a ConfigMap and have the process running in the pod
reload the files exposed in the configMap volume. You’ll modify the Nginx config file
from your previous example and make Nginx use the new config without restarting
the pod. Try switching gzip compression off by editing the fortune-config Config-
Map with kubectl edit:

$ kubectl edit configmap fortune-config

Once your editor opens, change the gzip on line to gzip off, save the file, and then
close the editor. The ConfigMap is then updated, and soon afterward, the actual file
in the volume is updated as well. You can confirm this by printing the contents of the
file with kubectl exec:

$ kubectl exec fortune-configmap-volume -c web-server
cat /etc/nginx/conf.d/my-nginx-config.conf

If you don’t see the update yet, wait a while and try again. It takes a while for the
files to get updated. Eventually, you'll see the change in the config file, but you’ll
find this has no effect on Nginx, because it doesn’t watch the files and reload them
automatically.

SIGNALING NGINX TO RELOAD THE CONFIG
Nginx will continue to compress its responses until you tell it to reload its config files,
which you can do with the following command:

$ kubectl exec fortune-configmap-volume -c web-server -- nginx -s reload

Now, if you try hitting the server again with curl, you should see the response is no
longer compressed (it no longer contains the Content-Encoding: gzip header).
You've effectively changed the app’s config without having to restart the container or
recreate the pod.

UNDERSTANDING HOW THE FILES ARE UPDATED ATOMICALLY

You may wonder what happens if an app can detect config file changes on its own and
reloads them before Kubernetes has finished updating all the files in the configMap
volume. Luckily, this can’t happen, because all the files are updated atomically, which
means all updates occur at once. Kubernetes achieves this by using symbolic links. If
you list all the files in the mounted configMap volume, you'll see something like the
following listing.

Listing 7.19 Files in a mounted configMap volume

$ kubectl exec -it fortune-configmap-volume -c web-server -- 1ls -1A
/etc/nginx/conf.d
total 4

drwxr-xr-x ... 12:15 ..4984 09 04 12 15 06.865837643



7.5

Using Secrets to pass sensitive data to containers 213

lrwxrwxrwx ... 12:15 ..data -> ..4984 09 04 12 15 06.865837643
lrwXxrwxrwx ... 12:15 my-nginx-config.conf -> ..data/my-nginx-config.conf
lrwxrwxrwx ... 12:15 sleep-interval -> ..data/sleep-interval

As you can see, the files in the mounted configMap volume are symbolic links point-
ing to files in the . .data dir. The . .data dir is also a symbolic link pointing to a direc-
tory called ..4984 09 04_something. When the ConfigMap is updated, Kubernetes
creates a new directory like this, writes all the files to it, and then re-links the . .data
symbolic link to the new directory, effectively changing all files at once.

UNDERSTANDING THAT FILES MOUNTED INTO EXISTING DIRECTORIES DON’T GET UPDATED

One big caveat relates to updating ConfigMap-backed volumes. If you’ve mounted a
single file in the container instead of the whole volume, the file will not be updated!
At least, this is true at the time of writing this chapter.

For now, if you need to add an individual file and have it updated when you update
its source ConfigMap, one workaround is to mount the whole volume into a different
directory and then create a symbolic link pointing to the file in question. The sym-
link can either be created in the container image itself, or you could create the
symlink when the container starts.

UNDERSTANDING THE CONSEQUENCES OF UPDATING A CONFIGMAP

One of the most important features of containers is their immutability, which allows
us to be certain that no differences exist between multiple running containers created
from the same image, so is it wrong to bypass this immutability by modifying a Config-
Map used by running containers?

The main problem occurs when the app doesn’t support reloading its configura-
tion. This results in different running instances being configured differently—those
pods that are created after the ConfigMap is changed will use the new config, whereas
the old pods will still use the old one. And this isn’t limited to new pods. If a pod’s con-
tainer is restarted (for whatever reason), the new process will also see the new config.
Therefore, if the app doesn’t reload its config automatically, modifying an existing
ConfigMap (while pods are using it) may not be a good idea.

If the app does support reloading, modifying the ConfigMap usually isn’t such a
big deal, but you do need to be aware that because files in the ConfigMap volumes
aren’t updated synchronously across all running instances, the files in individual pods
may be out of sync for up to a whole minute.

Using Secrets to pass sensitive data to containers

All the information you’ve passed to your containers so far is regular, non-sensitive
configuration data that doesn’t need to be kept secure. But as we mentioned at the
start of the chapter, the config usually also includes sensitive information, such as cre-
dentials and private encryption keys, which need to be kept secure.



214

75.1

7.5.2

CHAPTER 7 ConfigMaps and Secrets: configuring applications

Introducing Secrets

To store and distribute such information, Kubernetes provides a separate object called
a Secret. Secrets are much like ConfigMaps—they’re also maps that hold key-value
pairs. They can be used the same way as a ConfigMap. You can

Pass Secret entries to the container as environment variables
Expose Secret entries as files in a volume

Kubernetes helps keep your Secrets safe by making sure each Secret is only distributed
to the nodes that run the pods that need access to the Secret. Also, on the nodes
themselves, Secrets are always stored in memory and never written to physical storage,
which would require wiping the disks after deleting the Secrets from them.

On the master node itself (more specifically in etcd), Secrets used to be stored in
unencrypted form, which meant the master node needs to be secured to keep the sensi-
tive data stored in Secrets secure. This didn’t only include keeping the etcd storage
secure, but also preventing unauthorized users from using the API server, because any-
one who can create pods can mount the Secret into the pod and gain access to the sen-
sitive data through it. From Kubernetes version 1.7, etcd stores Secrets in encrypted
form, making the system much more secure. Because of this, it’s imperative you prop-
erly choose when to use a Secret or a ConfigMap. Choosing between them is simple:

Use a ConfigMap to store non-sensitive, plain configuration data.
Use a Secret to store any data that is sensitive in nature and needs to be kept

under key. If a config file includes both sensitive and not-sensitive data, you
should store the file in a Secret.

You already used Secrets in chapter 5, when you created a Secret to hold the TLS certifi-
cate needed for the Ingress resource. Now you’ll explore Secrets in more detail.

Introducing the default token Secret

You’ll start learning about Secrets by examining a Secret that’s mounted into every
container you run. You may have noticed it when using kubectl describe on a pod.
The command’s output has always contained something like this:

Volumes:
default-token-cfee9:
Type: Secret (a volume populated by a Secret)

SecretName: default-token-cfee9

Every pod has a secret volume attached to it automatically. The volume in the previ-
ous kubectl describe output refers to a Secret called default-token-cfee9. Because
Secrets are resources, you can list them with kubectl get secrets and find the
default-token Secret in that list. Let’s see:

$ kubectl get secrets

NAME TYPE DATA AGE
default-token-cfee9 kubernetes.io/service-account-token 3 39d



Using Secrets to pass sensitive data to containers 215

You can also use kubectl describe to learn a bit more about it, as shown in the follow-
ing listing.

Listing 7.20 Describing a Secret

$ kubectl describe secrets

Name : default-token-cfee9
Namespace: default
Labels: <none>

Annotations: kubernetes.io/service-account.name=default
kubernetes.io/service-account.uid=cc04bb39-b53£-42010af00237

Type: kubernetes.io/service-account-token

Data

ca.crt: 1139 bytes This secret
namespace: 7 bytes contains three
token: eyJhbGciOiJSUzI1INiIsInR5cCI6IkpXVCII. . . entries.

You can see that the Secret contains three entries—ca.crt, namespace, and token—
which represent everything you need to securely talk to the Kubernetes API server
from within your pods, should you need to do that. Although ideally you want your
application to be completely Kubernetes-agnostic, when there’s no alternative other
than to talk to Kubernetes directly, you’ll use the files provided through this secret
volume.

The kubectl describe pod command shows where the secret volume is mounted:

Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-cfee?

NOTE By default, the default-token Secret is mounted into every container,
but you can disable that in each pod by setting the automountService-
AccountToken field in the pod spec to false or by setting it to false on the
service account the pod is using. (You’ll learn about service accounts later in
the book.)

To help you visualize where and how the default token Secret is mounted, see fig-
ure 7.11.

We've said Secrets are like ConfigMaps, so because this Secret contains three
entries, you can expect to see three files in the directory the secret volume is mounted
into. You can check this easily with kubectl exec:

$ kubectl exec mypod ls /var/run/secrets/kubernetes.io/serviceaccount/
ca.crt

namespace

token

You’ll see how your app can use these files to access the API server in the next chapter.



216

7.5.3

CHAPTER 7 ConfigMaps and Secrets: configuring applications

Container

Filesystem

/
L var/
L run/ Default token Secret

L sEcrets/
kuberne'tes.lo/ Default token ca.crt
L serviceaccount/ secret
L_/‘ namespace
volume
token

Pod
N J

Figure 7.11 The default-token Secret is created automatically and a corresponding
volume is mounted in each pod automatically.

Creating a Secret

Now, you’ll create your own little Secret. You’ll improve your fortune-serving Nginx
container by configuring it to also serve HTTPS traffic. For this, you need to create a
certificate and a private key. The private key needs to be kept secure, so you'll put it
and the certificate into a Secret.

First, generate the certificate and private key files (do this on your local machine).
You can also use the files in the book’s code archive (the cert and key files are in the
fortune-https directory):
$ openssl genrsa -out https.key 2048

$ openssl req -new -x509 -key https.key -out https.cert -days 3650 -subj
/CN=www.kubia-example.com

Now, to help better demonstrate a few things about Secrets, create an additional
dummy file called foo and make it contain the string bar. You’ll understand why you
need to do this in a moment or two:

$ echo bar > foo

Now you can use kubectl create secret to create a Secret from the three files:

$ kubectl create secret generic fortune-https --from-file=https.key
--from-file=https.cert --from-file=foo
secret "fortune-https" created

This isn’t very different from creating ConfigMaps. In this case, you're creating a
generic Secret called fortune-https and including two entries in it (https.key with
the contents of the https.key file and likewise for the https.cert key/file). As you
learned earlier, you could also include the whole directory with --from-file=fortune-
https instead of specifying each file individually.



7.54

Using Secrets to pass sensitive data to containers 217

NOTE You're creating a generic Secret, but you could also have created a t1s
Secret with the kubectl create secret tls command, as you did in chapter 5.
This would create the Secret with different entry names, though.

Comparing ConfigMaps and Secrets

Secrets and ConfigMaps have a pretty big difference. This is what drove Kubernetes
developers to create ConfigMaps after Kubernetes had already supported Secrets for a
while. The following listing shows the YAML of the Secret you created.

Listing 7.21 A Secret’s YAML definition

$ kubectl get secret fortune-https -o yaml
apivVersion: vl
data:
foo: YmFyCg==
https.cert: LSOtLS1CRUAJTiBDRVJUSUZJQOFURSOtLS0tCk1JSURCekNDQ. . .
https.key: LSO0tLS1CRUAJTiBSUOEgUFJJVkKFURSBLRVKtLSOtLQPNSULFCE. ..
kind: Secret

Now compare this to the YAML of the ConfigMap you created earlier, which is shown
in the following listing.

Listing 7.22 A ConfigMap’s YAML definition

$ kubectl get configmap fortune-config -o yaml
apiVersion: vl
data:
my-nginx-config.conf: |
server {

}

sleep-interval: |
25
kind: ConfigMap

Notice the difference? The contents of a Secret’s entries are shown as Base64-encoded
strings, whereas those of a ConfigMap are shown in clear text. This initially made
working with Secrets in YAML and JSON manifests a bit more painful, because you
had to encode and decode them when setting and reading their entries.

USING SECRETS FOR BINARY DATA

The reason for using Base64 encoding is simple. A Secret’s entries can contain binary
values, not only plain-text. Base64 encoding allows you to include the binary data in
YAML or JSON, which are both plain-text formats.

TIP  You can use Secrets even for non-sensitive binary data, but be aware that
the maximum size of a Secret is limited to 1MB.



218

7.5.5

CHAPTER 7  ConfigMaps and Secrets: configuring applications

INTRODUCING THE STRINGDATA FIELD
Because not all sensitive data is in binary form, Kubernetes also allows setting a Secret’s
values through the stringData field. The following listing shows how it’s used.

Listing 7.23 Adding plain text entries to a Secret using the stringData field

kind: Secret The stringData can be used
apivVersion: vi1 for non-binary Secret data.
stringData: P -
foo: plain text See, “plain text” is not Base64-encoded.
data:

https.cert: LS0tLS1CRUAJTiBDRVJUSUZJQOFURSOtLSOtCk1JSURCekNDQ. . .
https.key: LS0tLS1CRUAJTiBSUOEgUFJJVKFURSBLRVktLSOtLQPNSULFCE. ..

The stringData field is write-only (note: write-only, not read-only). It can only be
used to set values. When you retrieve the Secret’s YAML with kubectl get -o yaml, the
stringData field will not be shown. Instead, all entries you specified in the string-
Data field (such as the foo entry in the previous example) will be shown under data
and will be Base64-encoded like all the other entries.

READING A SECRET’S ENTRY IN A POD

When you expose the Secret to a container through a secret volume, the value of the
Secret entry is decoded and written to the file in its actual form (regardless if it’s plain
text or binary). The same is also true when exposing the Secret entry through an envi-
ronment variable. In both cases, the app doesn’t need to decode it, but can read the
file’s contents or look up the environment variable value and use it directly.

Using the Secret in a pod

With your fortune-https Secret containing both the cert and key files, all you need to
do now is configure Nginx to use them.

MODIFYING THE FORTUNE-CONFIG CONFIGIVIAP TO ENABLE HTTPS
For this, you need to modify the config file again by editing the ConfigMap:

$ kubectl edit configmap fortune-config

After the text editor opens, modify the part that defines the contents of the my-nginx-
config.conf entry so it looks like the following listing.

Listing 7.24 Modifying the fortune-config ConfigMap’s data

data:

my-nginx-config.conf: |
server {
listen 80;
listen 443 ssl;

server_name www . kubia-example.com;



Using Secrets to pass sensitive data to containers 219

ssl certificate certs/https.cert; The paths are

ssl certificate key certs/https.key; relative to /etc/nginx.
ssl_protocols TLSv1l TLSvl.1l TLSv1.2;

ssl_ciphers HIGH: !aNULL: !MD5;

location / {
root /usr/share/nginx/html;
index index.html index.htm;

}
}

sleep-interval: |

This configures the server to read the certificate and key files from /etc/nginx/certs,
so you’ll need to mount the secret volume there.

IMIOUNTING THE FORTUNE-HTTPS SECRET IN A POD

Next, you’ll create a new fortune-https pod and mount the secret volume holding
the certificate and key into the proper location in the web-server container, as shown
in the following listing.

Listing 7.25 YAML definition of the fortune-https pod: fortune-pod-https.yaml

apiVersion: vl
kind: Pod
metadata:
name: fortune-https
spec:
containers:
- image: luksa/fortune:env
name: html-generator
env:
- name: INTERVAL
valueFrom:
configMapKeyRef :
name: fortune-config
key: sleep-interval
volumeMounts:
- name: html
mountPath: /var/htdocs
- image: nginx:alpine
name: web-server
volumeMounts:
- name: html
mountPath: /usr/share/nginx/html
readOnly: true
- name: config
mountPath: /etc/nginx/conf.d
readOnly: true

- name: certs You configured Nginx to read the cert and
mountPath: /etc/nginx/certs/ key file from /etc/nginx/certs, so you need
readOnly: true to mount the Secret volume there.

ports:

- containerPort: 80



220

Much is going on in this pod descriptor, so let me help you visualize it. Figure 7.12
shows the components defined in the YAML. The default-token Secret, volume, and
volume mount, which aren’t part of the YAML, but are added to your pod automati-

CHAPTER 7 ConfigMaps and Secrets: configuring applications

- containerPort:
volumes:

443

- name: html
emptyDir: {}

config

configMap:
name :
items:

- name:

fortune-config

- key: my-nginx-config.conf

path: https.conf
- name: certs
secret:

secretName:

fortune-https

cally, aren’t shown in the figure.

You define the secret
volume here, referring to
the fortune-https Secret.

e N
ConfigMap: fortune-config
Container: web-server
fiaM my-nginx-config.conf server {
/etc/nginx/conf.d/ contig a}p
volume: }
config
letc/nginx/certs/ j— --1->| sleep-interval 25
/usr/share/nginx/html/ 7—
Secret: fortune-https
secret https.cert
Container: html-generator volume: h -
sl ttps.key
foo
Environment variables:
INTERVAL=25
] emptyDir : ‘
var/htdocs volume: i Default token Secret and volume not shown |
html
Pod
- J

Figure 7.12 Combining a ConfigMap and a Secret to run your fortune-https pod

NOTE Like configMap volumes, secret volumes also support specifying file
permissions for the files exposed in the volume through the defaultMode

property.



Using Secrets to pass sensitive data to containers 221

TESTING WHETHER NGINX IS USING THE CERT AND KEY FROM THE SECRET

Once the pod is running, you can see if it’s serving HT'TPS traffic by opening a port-
forward tunnel to the pod’s port 443 and using it to send a request to the server
with curl:

$ kubectl port-forward fortune-https 8443:443 &

Forwarding from 127.0.0.1:8443 -> 443

Forwarding from [::1]:8443 -> 443
$ curl https://localhost:8443 -k

If you configured the server properly, you should get a response. You can check the
server’s certificate to see if it matches the one you generated earlier. This can also be
done with curl by turning on verbose logging using the -v option, as shown in the fol-
lowing listing.

Listing 7.26 Displaying the server certificate sent by Nginx

curl https://localhost:8443 -k -v

About to connect () to localhost port 8443 (#0)
Trying ::1...

Connected to localhost (::1) port 8443 (#0)

Initializing NSS with certpath: sqgl:/etc/pki/nssdb
skipping SSL peer certificate verification
SSL connection using TLS ECDHE RSA WITH AES 256 GCM SHA384
Server certificate:
subject: CN=www.kubia-example.com .
start date: aug 16 18:43:13 2016 GMT The ‘:mﬁ;ate
expire date: aug 14 18:43:13 2026 GMT matches the one you
. created and stored
common name: www.kubia-example.com .
X - in the Secret.
issuer: CN=www.kubia-example.com

* % kX X X X X X X F X W

UNDERSTANDING SECRET VOLUMES ARE STORED IN MEMORY

You successfully delivered your certificate and private key to your container by mount-
ing a secret volume in its directory tree at /etc/nginx/certs. The secret volume uses
an in-memory filesystem (tmpfs) for the Secret files. You can see this if you list mounts
in the container:

$ kubectl exec fortune-https -c web-server -- mount | grep certs
tmpfs on /etc/nginx/certs type tmpfs (ro,relatime)

Because tmpfs is used, the sensitive data stored in the Secret is never written to disk,
where it could be compromised.

EXPOSING A SECRET’S ENTRIES THROUGH ENVIRONMENT VARIABLES

Instead of using a volume, you could also have exposed individual entries from the
secret as environment variables, the way you did with the sleep-interval entry from
the ConfigMap. For example, if you wanted to expose the foo key from your Secret as
environment variable FOO SECRET, you’d add the snippet from the following listing to
the container definition.



222

7.5.6

CHAPTER 7 ConfigMaps and Secrets: configuring applications

Listing 7.27 Exposing a Secret’s entry as an environment variable

env:
- name: FOO SECRET The variable should be set
valueFrom: M from the entry of a Secret.
secretKeyRef:
pame: fortune-https ! The name of the Secret
key: foo QT The key of the Secret holding the key
to expose

This is almost exactly like when you set the INTERVAL environment variable, except
that this time you’re referring to a Secret by using secretKeyRef instead of config-
MapKeyRef, which is used to refer to a ConfigMap.

Even though Kubernetes enables you to expose Secrets through environment vari-
ables, it may not be the best idea to use this feature. Applications usually dump envi-
ronment variables in error reports or even write them to the application log at startup,
which may unintentionally expose them. Additionally, child processes inherit all the
environment variables of the parent process, so if your app runs a third-party binary,
you have no way of knowing what happens with your secret data.

TIP  Think twice before using environment variables to pass your Secrets to
your container, because they may get exposed inadvertently. To be safe, always
use secret volumes for exposing Secrets.

Understanding image pull Secrets

You've learned how to pass Secrets to your applications and use the data they contain.
But sometimes Kubernetes itself requires you to pass credentials to it—for example,
when you’d like to use images from a private container image registry. This is also
done through Secrets.

Up to now all your container images have been stored on public image registries,
which don’t require any special credentials to pull images from them. But most orga-
nizations don’t want their images to be available to everyone and thus use a private
image registry. When deploying a pod, whose container images reside in a private reg-
istry, Kubernetes needs to know the credentials required to pull the image. Let’s see
how to do that.

USING A PRIVATE IMAGE REPOSITORY ON DOCKER HuB
Docker Hub, in addition to public image repositories, also allows you to create private
repositories. You can mark a repository as private by logging in at http://hub.docker
.com with your web browser, finding the repository and checking a checkbox.

To run a pod, which uses an image from the private repository, you need to do
two things:

= Create a Secret holding the credentials for the Docker registry.
= Reference that Secret in the imagePullSecrets field of the pod manifest.


http://hub.docker.com
http://hub.docker.com
http://hub.docker.com

Using Secrets to pass sensitive data to containers 223

CREATING A SECRET FOR AUTHENTICATING WITH A DOCKER REGISTRY

Creating a Secret holding the credentials for authenticating with a Docker registry
isn’t that different from creating the generic Secret you created in section 7.5.3. You
use the same kubectl create secret command, but with a different type and
options:

$ kubectl create secret docker-registry mydockerhubsecret \
--docker-username=myusername --docker-password=mypassword \
--docker-email=my.email@provider.com

Rather than create a generic secret, you're creating a docker-registry Secret called
mydockerhubsecret. You're specifying your Docker Hub username, password, and
email. If you inspect the contents of the newly created Secret with kubectl describe,
you’ll see that it includes a single entry called .dockercfg. This is equivalent to the
.dockercfg file in your home directory, which is created by Docker when you run the
docker login command.

USING THE DOCKER-REGISTRY SECRET IN A POD DEFINITION

To have Kubernetes use the Secret when pulling images from your private Docker
Hub repository, all you need to do is specify the Secret’s name in the pod spec, as
shown in the following listing.

Listing 7.28 A pod definition using an image pull Secret: pod-with-private-image.yaml

apivVersion: vl
kind: Pod
metadata:
name: private-pod
spec:
imagePullSecrets: This enables pulling images
- name: mydockerhubsecret from a private image registry.
containers:
- image: username/private:tag
name: main

In the pod definition in the previous listing, you're specifying the mydockerhubsecret
Secret as one of the imagePullSecrets. I suggest you try this out yourself, because it’s
likely you’ll deal with private container images soon.

NOT HAVING TO SPECIFY IMAGE PULL SECRETS ON EVERY POD

Given that people usually run many different pods in their systems, it makes you won-
der if you need to add the same image pull Secrets to every pod. Luckily, that’s not the
case. In chapter 12 you’ll learn how image pull Secrets can be added to all your pods
automatically if you add the Secrets to a ServiceAccount.



224 CHAPTER 7 ConfigMaps and Secrets: configuring applications

7.6  Summary

This wraps up this chapter on how to pass configuration data to containers. You've
learned how to

Override the default command defined in a container image in the pod definition
Pass command-line arguments to the main container process
Set environment variables for a container
Decouple configuration from a pod specification and put it into a ConfigMap
Store sensitive data in a Secret and deliver it securely to containers
Create a docker-registry Secret and use it to pull images from a private image
registry
In the next chapter, you’ll learn how to pass pod and container metadata to applica-
tions running inside them. You’ll also see how the default token Secret, which we
learned about in this chapter, is used to talk to the API server from within a pod.



Accessing pod metadaia
and other resources
Jrom applications

This chapter covers

Using the Downward API to pass information into
containers

Exploring the Kubernetes REST API

Leaving authentication and server verification to
kubectl proxy

Accessing the API server from within a container
Understanding the ambassador container pattern
Using Kubernetes client libraries

Applications often need information about the environment they’re running in,
including details about themselves and that of other components in the cluster.
You've already seen how Kubernetes enables service discovery through environ-
ment variables or DNS, but what about other information? In this chapter, you’ll
see how certain pod and container metadata can be passed to the container and
how easy it is for an app running inside a container to talk to the Kubernetes API
server to get information about the resources deployed in the cluster and even how
to create or modify those resources.

225



226

8.1

8.1.1

CHAPTER 8 Accessing pod metadata and other resources from applications

Passing metadata through the Downward API

In the previous chapter you saw how you can pass configuration data to your appli-
cations through environment variables or through configMap and secret volumes.
This works well for data that you set yourself and that is known before the pod is
scheduled to a node and run there. But what about data that isn’t known up until
that point—such as the pod’s IP, the host node’s name, or even the pod’s own name
(when the name is generated; for example, when the pod is created by a ReplicaSet
or similar controller)? And what about data that’s already specified elsewhere, such
as a pod’s labels and annotations? You don’t want to repeat the same information in
multiple places.

Both these problems are solved by the Kubernetes Downward API. It allows you to
pass metadata about the pod and its environment through environment variables or
files (in a downwardAPI volume). Don’t be confused by the name. The Downward API
isn’t like a REST endpoint that your app needs to hit so it can get the data. It’s a way of
having environment variables or files populated with values from the pod’s specifica-
tion or status, as shown in figure 8.1.

Used to initialize environment
variables and files in the
downwardAPI volume

e N
API server Container: main
Environment
( variables
Pod manifest
S
- Metadata App process
- Status
|

downwardAPI
volume

Pod
N J

Figure 8.1 The Downward API exposes pod metadata through environment variables or files.

Understanding the available metadata

The Downward API enables you to expose the pod’s own metadata to the processes
running inside that pod. Currently, it allows you to pass the following information to
your containers:

The pod’s name
The pod’s IP address



8.1.2

Passing metadata through the Downward API 227

= The namespace the pod belongs to

= The name of the node the pod is running on

= The name of the service account the pod is running under
= The CPU and memory requests for each container

= The CPU and memory limits for each container

= The pod’s labels

= The pod’s annotations

Most of the items in the list shouldn’t require further explanation, except perhaps the
service account and CPU/memory requests and limits, which we haven’t introduced
yet. We’ll cover service accounts in detail in chapter 12. For now, all you need to know
is that a service account is the account that the pod authenticates as when talking to
the API server. CPU and memory requests and limits are explained in chapter 14.
They’re the amount of CPU and memory guaranteed to a container and the maxi-
mum amount it can get.

Most items in the list can be passed to containers either through environment vari-
ables or through a downwardAPI volume, but labels and annotations can only be
exposed through the volume. Part of the data can be acquired by other means (for
example, from the operating system directly), but the Downward API provides a sim-
pler alternative.

Let’s look at an example to pass metadata to your containerized process.

Exposing metadata through environment variables

First, let’s look at how you can pass the pod’s and container’s metadata to the con-
tainer through environment variables. You'll create a simple single-container pod
from the following listing’s manifest.

Listing 8.1 Downward API used in environment variables: downward-api-env.yaml

apiVersion: vl
kind: Pod
metadata:
name: downward
spec:
containers:
- name: main
image: busybox
command: ["sleep", "9999999"]
resources:
requests:
cpu: 15m
memory: 100Ki
limits:
cpu: 100m
memory: 4Mi
env:
- name: POD_NAME



228

CHAPTER 8 Accessing pod metadata and other resources from applications

valueFrom: Instead of specifying an absolute value,
fieldRef: you’re referencing the metadata.name
fieldPath: metadata.name field from the pod manifest.
- name: POD_NAMESPACE
valueFrom:
fieldRef:

fieldPath: metadata.namespace
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: status.podIP
- name: NODE NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: SERVICE_ ACCOUNT

valueFrom:
fieldRef:
fieldPath: spec.serviceAccountName A container’s CPU and memory
- name: CONTAINER CPU REQUEST MILLICORES requests and limits are referenced
valueFrom: 1 by using resourceFieldRef instead
resourceFieldRef: k/ of fieldRef.
resource: requests.cpu

divisor: 1m
- name: CONTAINER_MEMORY LIMIT KIBIBYTES
valueFrom:

For resource fields, you
define a divisor to get the

value in the unit you need.
resourceFieldRef:

resource: limits.memory
divisor: 1Ki

When your process runs, it can look up all the environment variables you defined in
the pod spec. Figure 8.2 shows the environment variables and the sources of their val-
ues. The pod’s name, IP, and namespace will be exposed through the POD NAME,
POD IP, and POD NAMESPACE environment variables, respectively. The name of the
node the container is running on will be exposed through the NODE_NAME variable.
The name of the service account is made available through the SERVICE ACCOUNT
environment variable. You're also creating two environment variables that will hold
the amount of CPU requested for this container and the maximum amount of mem-
ory the container is allowed to consume.

For environment variables exposing resource limits or requests, you specify a divi-
sor. The actual value of the limit or the request will be divided by the divisor and the
result exposed through the environment variable. In the previous example, you're set-
ting the divisor for CPU requests to 1m (one milli-core, or one one-thousandth of a
CPU core). Because you've set the CPU request to 15m, the environment variable
CONTAINER CPU REQUEST MILLICORES will be set to 15. Likewise, you set the memory
limit to 4Mi (4 mebibytes) and the divisor to 1XKi (1 Kibibyte), so the CONTAINER MEMORY
_LIMIT KIBIBYTES environment variable will be set to 4096.



Passing metadata through the Downward API 229

Pod manifest IL

metadata:
name: downward
( p\
namespace: default
Container: main spec:
— nodeName: minikube
serviceAccountName: default
Environment variables containers:
POD_NAME=downward \ - name: main
POD_NAMESPACE=default image: busybox
POD IP=172.17.0.4 Z command: ["sleep", "9999999"]
NODE_NAME=minikube ) J resources:
SERVICE_ACCOUNT=default 7 divisor: 1m requests:
CONTAINER CPU REQUEST MILLICORES=15 \ cpu: 15m
CONTAINER MEMORY LIMIT KIBIBYTES=4096 memory: 100Ki
limits:
divisor: 1Ki cpu: 100m
memory: 4Mi

L Pod: downward ) status:
podIP: 172.17.0.4

Figure 8.2 Pod metadata and attributes can be exposed to the pod through environment variables.

The divisor for CPU limits and requests can be either 1, which means one whole core,
or 1m, which is one millicore. The divisor for memory limits/requests can be 1 (byte),
1k (kilobyte) or 1Ki (kibibyte), 1M (megabyte) or 1Mi (mebibyte), and so on.

After creating the pod, you can use kubectl exec to see all these environment vari-
ables in your container, as shown in the following listing.

Listing 8.2 Environment variables in the downward pod

$ kubectl exec downward env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=downward

CONTAINER MEMORY LIMIT KIBIBYTES=4096
POD_NAME=downward

POD_NAMESPACE=default

POD_IP=10.0.0.10
NODE_NAME=gke-kubia-default-pool-32a2cac8-sgl7
SERVICE_ACCOUNT=default

CONTAINER CPU_REQUEST MILLICORES=15
KUBERNETES SERVICE HOST=10.3.240.1

KUBERNETES SERVICE PORT=443



230 CHAPTER 8 Accessing pod metadata and other resources from applications

All processes running inside the container can read those variables and use them how-
ever they need.

813 Passing metadata through files in a downwardAPI volume

If you prefer to expose the metadata through files instead of environment variables,
you can define a downwardAPI volume and mount it into your container. You must use
a downwardAPI volume for exposing the pod’s labels or its annotations, because nei-
ther can be exposed through environment variables. We’ll discuss why later.

As with environment variables, you need to specify each metadata field explicitly if
you want to have it exposed to the process. Let’s see how to modify the previous exam-
ple to use a volume instead of environment variables, as shown in the following listing.

Listing 8.3 Pod with a downwardAPI volume: downward-api-volume.yaml

apiversion: vl
kind: Pod
metadata:
name: downward
labels:
foo: bar
annotations: These labels and
keyl: valuel annotations will be
key2: | exposed through the
multi downwardAPI volume.
line
value
spec:

containers:
- name: main
image: busybox
command: ["sleep", "9999999"]
resources:
requests:
cpu: 15m
memory: 100Ki
limits:
cpu: 100m
memory: 4Mi
volumeMounts : You’re mounting the
- name: downward downward volume
mountPath: /etc/downward under /etc/downward.

volumes:
- name: downward You’re defining a downwardAPI
downwardAPT : ‘ volume with the name downward.
items:
- path: "podName" The pod’s name (from the metadata.name
fieldRef: field in the manifest) will be written to
fieldPath: metadata.name the podName file.
- path: "podNamespace"
fieldRef:

fieldPath: metadata.namespace



Passing metadata through the Downward API 231

- path: "labels" . .
fieldRef: The pod’s labels will be written

fieldpath: metadata.labels to the /etc/downward/labels file.

- path: "annotations" The pod’s annotations will be
fieldRef: written to the /etc/downward/
fieldPath: metadata.annotations annotations file.
- path: "containerCpuRequestMilliCores"
resourceFieldRef:

containerName: main
resource: requests.cpu
divisor: 1m
- path: "containerMemoryLimitBytes"
resourceFieldRef:
containerName: main
resource: limits.memory
divisor: 1

Instead of passing the metadata through environment variables, you’re defining a vol-
ume called downward and mounting it in your container under /etc/downward. The
files this volume will contain are configured under the downwardAPI.items attribute
in the volume specification.

Each item specifies the path (the filename) where the metadata should be written
to and references either a pod-level field or a container resource field whose value you
want stored in the file (see figure 8.3).

4 N\
Container: main
Pod manifest Il
Filesystem
/ metadata:
L ete/ name: downward
L downward/ — namespace: default
— labels:
foo: bar
annotations:
downwardAPI volume spec:
/podN containers:
podName .
- name: main
/podNamespace )
/label ) image: busybox
abels
/ i command: ["sleep", "9999999"]
annotations
resources:
/containerCpuRequestMilliCores c
. o - . requests:
/containerMemoryLimitBytes l divisor: 1m
——————— cpu: 15m
\\-\___________________________,—f” memory: 100Ki
limits:
L Pod: downward ) divisor: 1 cpu: 100m
memory: 4Mi

Figure 8.3 Using a downwardAPI volume to pass metadata to the container



232

CHAPTER 8 Accessing pod metadata and other resources from applications

Delete the previous pod and create a new one from the manifest in the previous list-
ing. Then look at the contents of the mounted downwardAPI volume directory. You
mounted the volume under /etc/downward/, so list the files in there, as shown in the
following listing.

Listing 8.4 Files in the downwardAPI volume

$ kubectl exec downward ls -1L /etc/downward

-YwW-Yr--r-- 1 root root 134 May 25 10:23 annotations

-rw-r--r-- 1 root root 2 May 25 10:23 containerCpuRequestMilliCores
-rw-r--r-- 1 root root 7 May 25 10:23 containerMemoryLimitBytes
-YW-Y--r-- 1 root root 9 May 25 10:23 labels

-rwW-Yr--Ir-- 1 root root 8 May 25 10:23 podName

-rw-r--r-- 1 root root 7 May 25 10:23 podNamespace

NOTE As with the configMap and secret volumes, you can change the file
permissions through the downwardAPI volume’s defaultMode property in the
pod spec.

Each file corresponds to an item in the volume’s definition. The contents of files,
which correspond to the same metadata fields as in the previous example, are the
same as the values of environment variables you used before, so we won’t show them
here. But because you couldn’t expose labels and annotations through environment
variables before, examine the following listing for the contents of the two files you
exposed them in.

Listing 8.5 Displaying labels and annotations in the downwardAPI volume

$ kubectl exec downward cat /etc/downward/labels
foo="bar"

$ kubectl exec downward cat /etc/downward/annotations
keyl="valuel"

key2="multi\nline\nvalue\n"
kubernetes.io/config.seen="2016-11-28T14:27:45.6649242822"
kubernetes.io/config.source="api"

As you can see, each label/annotation is written in the key=value format on a sepa-
rate line. Multi-line values are written to a single line with newline characters denoted
with \n.

UPDATING LABELS AND ANNOTATIONS

You may remember that labels and annotations can be modified while a pod is run-
ning. As you might expect, when they change, Kubernetes updates the files holding
them, allowing the pod to always see up-to-date data. This also explains why labels and
annotations can’t be exposed through environment variables. Because environment
variable values can’t be updated afterward, if the labels or annotations of a pod were
exposed through environment variables, there’s no way to expose the new values after
they’re modified.



8.2

Talking to the Kubernetes API server 233

REFERRING TO CONTAINER-LEVEL METADATA IN THE VOLUME SPECIFICATION

Before we wrap up this section, we need to point out one thing. When exposing con-
tainer-level metadata, such as a container’s resource limit or requests (done using
resourceFieldRef), you need to specify the name of the container whose resource
field you're referencing, as shown in the following listing.

Listing 8.6 Referring to container-level metadata in a downwardAPI volume

spec:
volumes:
- name: downward
downwardAPI :
items:
- path: "containerCpuRequestMilliCores"
resourceFieldRef : QAJ Contﬁnername
containerName: main must be specified
resource: requests.cpu
divisor: 1m

The reason for this becomes obvious if you consider that volumes are defined at the
pod level, not at the container level. When referring to a container’s resource field
inside a volume specification, you need to explicitly specify the name of the container
you’re referring to. This is true even for single-container pods.

Using volumes to expose a container’s resource requests and/or limits is slightly
more complicated than using environment variables, but the benefit is that it allows
you to pass one container’s resource fields to a different container if needed (but
both containers need to be in the same pod). With environment variables, a container
can only be passed its own resource limits and requests.

UNDERSTANDING WHEN TO USE THE DOWNWARD API
As you’ve seen, using the Downward API isn’t complicated. It allows you to keep the
application Kubernetes-agnostic. This is especially useful when you’re dealing with an
existing application that expects certain data in environment variables. The Down-
ward API allows you to expose the data to the application without having to rewrite
the application or wrap it in a shell script, which collects the data and then exposes it
through environment variables.

But the metadata available through the Downward API is fairly limited. If you need
more, you’ll need to obtain it from the Kubernetes API server directly. You'll learn
how to do that next.

Talking to the Kubernetes API server

We’ve seen how the Downward API provides a simple way to pass certain pod and con-
tainer metadata to the process running inside them. It only exposes the pod’s own
metadata and a subset of all of the pod’s data. But sometimes your app will need to
know more about other pods and even other resources defined in your cluster. The
Downward API doesn’t help in those cases.



234

821

CHAPTER 8 Accessing pod metadata and other resources from applications

As you’ve seen throughout the book, information about services and pods can be
obtained by looking at the service-related environment variables or through DNS. But
when the app needs data about other resources or when it requires access to the most
up-to-date information as possible, it needs to talk to the API server directly (as shown
in figure 8.4).

e N
Container APl server
App process
API objects
Figure 8.4 Talking to the API server
Pod from inside a pod to get information
N J about other API objects

Before you see how apps within pods can talk to the Kubernetes API server, let’s first
explore the server’s REST endpoints from your local machine, so you can see what
talking to the API server looks like.

Exploring the Kubernetes REST API

You’ve learned about different Kubernetes resource types. But if you’re planning on
developing apps that talk to the Kubernetes API, you’ll want to know the API first.

To do that, you can try hitting the API server directly. You can get its URL by run-
ning kubectl cluster-info:

$ kubectl cluster-info
Kubernetes master is running at https://192.168.99.100:8443

Because the server uses HT'TPS and requires authentication, it’s not simple to talk to
it directly. You can try accessing it with curl and using curl’s --insecure (or -k)
option to skip the server certificate check, but that doesn’t get you far:

$ curl https://192.168.99.100:8443 -k
Unauthorized

Luckily, rather than dealing with authentication yourself, you can talk to the server
through a proxy by running the kubectl proxy command.

AcCESSING THE APl SERVER THROUGH KUBECTL PROXY

The kubectl proxy command runs a proxy server that accepts HIT'TP connections on
your local machine and proxies them to the API server while taking care of authenti-
cation, so you don’t need to pass the authentication token in every request. It also
makes sure you're talking to the actual API server and not a man in the middle (by
verifying the server’s certificate on each request).



Talking to the Kubernetes API server 235

Running the proxy is trivial. All you need to do is run the following command:

$ kubectl proxy
Starting to serve on 127.0.0.1:8001

You don’t need to pass in any other arguments, because kubectl already knows every-
thing it needs (the API server URL, authorization token, and so on). As soon as it starts
up, the proxy starts accepting connections on local port 8001. Let’s see if it works:

$ curl localhost:8001

{
"paths": [
n/apin ,
"/api/vl" ,

Voila! You sent the request to the proxy, it sent a request to the API server, and then
the proxy returned whatever the server returned. Now, let’s start exploring.

EXPLORING THE KUBERNETES APl THROUGH THE KUBECTL PROXY

You can continue to use curl, or you can open your web browser and point it to
http://localhost:8001. Let’s examine what the API server returns when you hit its base
URL more closely. The server responds with a list of paths, as shown in the follow-
ing listing.

Listing 8.7 Listing the API server’'s REST endpoints: http://localhost:8001

$ curl http://localhost:8001

{
"paths": [

"/apin", Most resource types
"/api/vin can be found here.
n /apis n ,

"/apis/apps",

"/apis/apps/vlibetal",

"/apis/batch", The batch API
"/apis/batch/v1", group and its
"/apis/batch/v2alphal", two versions

These paths correspond to the API groups and versions you specify in your resource
definitions when creating resources such as Pods, Services, and so on.

You may recognize the batch/v1 in the /apis/batch/v1 path as the API group and
version of the Job resources you learned about in chapter 4. Likewise, the /api/v1
corresponds to the apiVersion: v1 you refer to in the common resources you created
(Pods, Services, ReplicationControllers, and so on). The most common resource
types, which were introduced in the earliest versions of Kubernetes, don’t belong to


http://localhost:8001
http://localhost:8001

236

CHAPTER 8 Accessing pod metadata and other resources from applications

any specific group, because Kubernetes initially didn’t even use the concept of API
groups; they were introduced later.

NOTE These initial resource types without an API group are now considered
to belong to the core API group.

EXPLORING THE BATCH API GROUP’S REST ENDPOINT
Let’s explore the Job resource API. You’ll start by looking at what’s behind the
/apis/batch path (you’ll omit the version for now), as shown in the following listing.

Listing 8.8 Listing endpoints under /apis/batch: http://localhost:8001/apis/batch

$ curl http://localhost:8001/apis/batch

{

"kind": "APIGroup",

"apivVersion": "v1",
"name": "batch",
"versions": [
"groupVersion": "batch/v1",
"version": "v1"
} The batch API
i ! group contains
"groupVersion": "batch/v2alphal", two versions.
"version": "v2alphal"
}
1,
"preferredVersion": { Clients should use the
"groupVersion": "batch/v1l", v1 version instead of
"version": "v1" v2alpha1.

b

"serverAddressByClientCIDRs": null

The response shows a description of the batch API group, including the available ver-
sions and the preferred version clients should use. Let’s continue and see what’s
behind the /apis/batch/v1 path. It’s shown in the following listing.

Listing 8.9 Resource types in batch/v1: http://localhost:8001/apis/batch/v1

$ curl http://localhost:8001/apis/batch/v1l

"kind": "APIResourceList", L
s o w This is a list of API resources
apiversion®: *vi', in the batch/v1 API grou
"groupVersion": "batch/v1", group.
"resources": [ .
{ Here’s an array holding
"name": "jobs", This describes the all the resource types

"namespaced": true, in this group.

"kind": "Job",

Job resource, which
is namespaced.



http://localhost:8001/apis/batch
http://localhost:8001/apis/batch/v1

Talking to the Kubernetes API server 237

"verbs": [
"create",
"delete", Here are the verbs that can be used
"deletecollection", with this resource (you can create
"get™", Jobs; delete individual ones or a
"list", collection of them; and retrieve,
"patch", watch, and update them).
"update",
"watch"
]
b
{ Resources also have a
"name": "jobs/status", Q{ special REST endpoint for
"namespaced": true, modifying their status.
"kind": "Job",
vf;g:,, o The status can be
N - retrieved, patched,
patch",
or updated.
"update"

As you can see, the API server returns a list of resource types and REST endpoints in
the batch/v1 API group. One of those is the Job resource. In addition to the name of
the resource and the associated kind, the API server also includes information on
whether the resource is namespaced or not, its short name (if it has one; Jobs don’t),
and a list of verbs you can use with the resource.

The returned list describes the REST resources exposed in the API server. The
"name": "jobs" line tells you that the API contains the /apis/batch/v1/jobs end-
point. The "verbs" array says you can retrieve, update, and delete Job resources
through that endpoint. For certain resources, additional API endpoints are also
exposed (such as the jobs/status path, which allows modifying only the status of
a Job).

LISTING ALL JOB INSTANCES IN THE CLUSTER

To get a list of Jobs in your cluster, perform a GET request on path /apis/batch/
v1/jobs, as shown in the following listing.

Listing 8.10 List of Jobs: http://localhost:8001/apis/batch/v1/jobs

$ curl http://localhost:8001/apis/batch/v1l/jobs

{

"kind": "JobList",
"apiVersion": "batch/v1",
"metadata": {
"selfLink": "/apis/batch/v1/jobs",
"resourceVersion": "225162"

b


http://localhost:8001/apis/batch/v1/jobs

238

822

CHAPTER 8 Accessing pod metadata and other resources from applications

"items": [
"metadata":
"name": "my-job",
"namespace": "default",

You probably have no Job resources deployed in your cluster, so the items array will be
empty. You can try deploying the Job in Chapter08/my-job.yaml and hitting the REST
endpoint again to get the same output as in listing 8.10.

RETRIEVING A SPECIFIC JOB INSTANCE BY NAME
The previous endpoint returned a list of all Jobs across all namespaces. To get back
only one specific Job, you need to specify its name and namespace in the URL. To
retrieve the Job shown in the previous listing (name: my-job; namespace: default),
you need to request the following path: /apis/batch/v1/namespaces/default/jobs/
my-job, as shown in the following listing.

Listing 8.11 Retrieving a resource in a specific namespace by name

$ curl http://localhost:8001/apis/batch/vl/namespaces/default/jobs/my-job

"kind": "Job",
"apiVersion": "batch/v1l",
"metadata": {
"name": "my-job",
"namespace": "default",

As you can see, you get back the complete JSON definition of the my-job Job resource,
exactly like you do if you run:

$ kubectl get job my-job -o json

You've seen that you can browse the Kubernetes REST API server without using any
special tools, but to fully explore the REST API and interact with it, a better option is
described at the end of this chapter. For now, exploring it with curl like this is enough
to make you understand how an application running in a pod talks to Kubernetes.

Talking to the API server from within a pod

You've learned how to talk to the API server from your local machine, using the
kubectl proxy. Now, let’s see how to talk to it from within a pod, where you (usually)
don’t have kubectl. Therefore, to talk to the API server from inside a pod, you need
to take care of three things:

= Find the location of the API server.
= Make sure you’re talking to the API server and not something impersonating it.
= Authenticate with the server; otherwise it won’t let you see or do anything.



Talking to the Kubernetes API server 239

You'll see how this is done in the next three sections.

RUNNING A POD TO TRY OUT COMMUNICATION WITH THE APl SERVER

The first thing you need is a pod from which to talk to the API server. You’ll run a pod
that does nothing (it runs the sleep command in its only container), and then run a
shell in the container with kubectl exec. Then you’ll try to access the API server from
within that shell using curl.

Therefore, you need to use a container image that contains the curl binary. If you
search for such an image on, say, Docker Hub, you’ll find the tutum/curl image, so
use it (you can also use any other existing image containing the curl binary or you
can build your own). The pod definition is shown in the following listing.

Listing 8.12 A pod for trying out communication with the API server: curl.yaml

apivVersion: vl

kind: Pod . .
Using the tutum/curl image,
metadata:
because you need curl
name: curl . . .
available in the container
spec:
containers: , X
- name: main You’re running the sleep

command with a long delay to

image: tutum/curl t ‘
keep your container running.

command: ["sleep", "9999999"]

After creating the pod, run kubectl exec to run a bash shell inside its container:

$ kubectl exec -it curl bash
root@curl:/#

You’re now ready to talk to the API server.

FINDING THE APl SERVER’S ADDRESS

First, you need to find the IP and port of the Kubernetes API server. This is easy,
because a Service called kubernetes is automatically exposed in the default name-
space and configured to point to the API server. You may remember seeing it every
time you listed services with kubectl get svc:

$ kubectl get svc
NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
kubernetes 10.0.0.1 <none> 443 /TCP 464

And you’ll remember from chapter 5 that environment variables are configured for
each service. You can get both the IP address and the port of the API server by looking
up the KUBERNETES_SERVICE HOST and KUBERNETES_SERVICE PORT variables (inside
the container):

root@curl:/# env | grep KUBERNETES_ SERVICE
KUBERNETES SERVICE PORT=443
KUBERNETES_SERVICE HOST=10.0.0.1
KUBERNETES_SERVICE_PORT HTTPS=443



240

CHAPTER 8 Accessing pod metadata and other resources from applications

You may also remember that each service also gets a DNS entry, so you don’t even
need to look up the environment variables, but instead simply point curl to
https://kubernetes. To be fair, if you don’t know which port the service is available at,
you also either need to look up the environment variables or perform a DNS SRV
record lookup to get the service’s actual port number.

The environment variables shown previously say that the API server is listening on
port 443, which is the default port for HTTPS, so try hitting the server through
HTTPS:

root@curl:/# curl https://kubernetes
curl: (60) SSL certificate problem: unable to get local issuer certificate

If you'd like to turn off curl's verification of the certificate, use
the -k (or --insecure) option.

Although the simplest way to get around this is to use the proposed -k option (and
this is what you’d normally use when playing with the API server manually), let’s look
at the longer (and correct) route. Instead of blindly trusting that the server you're
connecting to is the authentic API server, you’ll verify its identity by having curl check
its certificate.

TIP Never skip checking the server’s certificate in an actual application.
Doing so could make your app expose its authentication token to an attacker
using a man-in-the-middle attack.

VERIFYING THE SERVER’S IDENTITY

In the previous chapter, while discussing Secrets, we looked at an automatically cre-
ated Secret called default-token-xyz, which is mounted into each container at
/var/run/secrets/kubernetes.io/serviceaccount/. Let’s see the contents of that Secret
again, by listing files in that directory:

root@curl:/#1ls/var/run/secrets/kubernetes.io/serviceaccount/
ca.crt namespace token

The Secret has three entries (and therefore three files in the Secret volume). Right
now, we’ll focus on the ca.crt file, which holds the certificate of the certificate author-
ity (CA) used to sign the Kubernetes API server’s certificate. To verify you’re talking to
the API server, you need to check if the server’s certificate is signed by the CA. curl
allows you to specify the CA certificate with the --cacert option, so try hitting the API
server again:

root@curl:/# curl --cacert /var/run/secrets/kubernetes.io/serviceaccount
/ca.crt https://kubernetes
Unauthorized

NOTE You may see a longer error description than “Unauthorized.”


https://kubernetes

Talking to the Kubernetes API server 241

Okay, you’'ve made progress. curl verified the server’s identity because its certificate
was signed by the CA you trust. As the Unauthorized response suggests, you still need
to take care of authentication. You’ll do that in a moment, but first let’s see how to
make life easier by setting the CURL_CA_BUNDLE environment variable, so you don’t
need to specify --cacert every time you run curl:

root@curl:/# export CURL CA BUNDLE=/var/run/secrets/kubernetes.io/
serviceaccount/ca.crt

You can now hit the API server without using --cacert:

root@curl:/# curl https://kubernetes
Unauthorized

This is much nicer now. Your client (curl) trusts the API server now, but the API
server itself says you’re not authorized to access it, because it doesn’t know who
you are.

AUTHENTICATING WITH THE APl SERVER
You need to authenticate with the server, so it allows you to read and even update
and/or delete the API objects deployed in the cluster. To authenticate, you need an
authentication token. Luckily, the token is provided through the default-token Secret
mentioned previously, and is stored in the token file in the secret volume. As the
Secret’s name suggests, that’s the primary purpose of the Secret.

You're going to use the token to access the API server. First, load the token into an
environment variable:

root@curl:/# TOKEN=$ (cat /var/run/secrets/kubernetes.io/
serviceaccount/token)

The token is now stored in the TOKEN environment variable. You can use it when send-
ing requests to the API server, as shown in the following listing.

Listing 8.13 Getting a proper response from the API server

root@curl:/# curl -H "Authorization: Bearer $TOKEN" https://kubernetes
{
"paths": [

"/api",

"/api/vi",

"/apis",

"/apis/apps",

"/apis/apps/vlbetal",

"/apis/authorization.k8s.io",

"')L.li/" ,

"/version"



242

CHAPTER 8 Accessing pod metadata and other resources from applications

Disabling role-based access control (RBAC)

If you’re using a Kubernetes cluster with RBAC enabled, the service account may not
be authorized to access (parts of) the API server. You'll learn about service accounts
and RBAC in chapter 12. For now, the simplest way to allow you to query the API
server is to work around RBAC by running the following command:

$ kubectl create clusterrolebinding permissive-binding \
--clusterrole=cluster-admin \
--group=system: serviceaccounts

This gives all service accounts (we could also say all pods) cluster-admin privileges,
allowing them to do whatever they want. Obviously, doing this is dangerous and
should never be done on production clusters. For test purposes, it’s fine.

As you can see, you passed the token inside the Authorization HTTP header in the
request. The API server recognized the token as authentic and returned a proper
response. You can now explore all the resources in your cluster, the way you did a few
sections ago.

For example, you could list all the pods in the same namespace. But first you need
to know what namespace the curl pod is running in.

GETTING THE NAMESPACE THE POD IS RUNNING IN

In the first part of this chapter, you saw how to pass the namespace to the pod
through the Downward API. But if you’re paying attention, you probably noticed
your secret volume also contains a file called namespace. It contains the name-
space the pod is running in, so you can read the file instead of having to explicitly
pass the namespace to your pod through an environment variable. Load the con-
tents of the file into the NS environment variable and then list all the pods, as shown
in the following listing.

Listing 8.14 Listing pods in the pod’s own namespace

root@curl:/# NS=$(cat /var/run/secrets/kubernetes.io/
serviceaccount/namespace)

root@curl:/# curl -H "Authorization: Bearer $TOKEN"
https://kubernetes/api/vl/namespaces/$NS/pods

{

"kind": "PodList",
"apiVersion": "v1",

And there you go. By using the three files in the mounted secret volume directory,
you listed all the pods running in the same namespace as your pod. In the same man-
ner, you could also retrieve other API objects and even update them by sending PUT or
PATCH instead of simple GET requests.



8.23

Talking to the Kubernetes API server 243

RECAPPING HOW PODS TALK TO KUBERNETES

Let’s recap how an app running inside a pod can access the Kubernetes API properly:

The app should verify whether the API server’s certificate is signed by the certif-

icate authority, whose certificate is in the ca.crt file.

The app should authenticate itself by sending the Authorization header with
the bearer token from the token file.

The namespace file should be used to pass the namespace to the API server when
performing CRUD operations on API objects inside the pod’s namespace.

DEFINITION CRUD stands for Create, Read, Update, and Delete. The corre-
sponding HTTP methods are POST, GET, PATCH/PUT, and DELETE, respectively.

All three aspects of pod to API server communication are displayed in figure 8.5.

4 I\
Container
Filesystem App
/ AN
L var Server
L run/ Validate certificate API server
L secrets/ certificate
L kubernetes.io/
serviceaccount/
C }
GET /api/vl/namespaces/<namespaces/pods
Authorization: Bearer <tokens>
Default token secret volume
namespace
J
J
Pod
o J

Figure 8.5 Using the files from the default-token Secret to talk to the API server

Simplifying API server communication with ambassador

containers

Dealing with HTTPS, certificates, and authentication tokens sometimes seems too
complicated to developers. I've seen developers disable validation of server certifi-
cates on way too many occasions (and I’ll admit to doing it myself a few times). Luck-

ily, you can make the communication much simpler while keeping it secure.



244

CHAPTER 8 Accessing pod metadata and other resources from applications

Remember the kubectl proxy command we mentioned in section 8.2.1? You ran
the command on your local machine to make it easier to access the API server. Instead
of sending requests to the API server directly, you sent them to the proxy and let it
take care of authentication, encryption, and server verification. The same method can
be used inside your pods, as well.

INTRODUCING THE AMBASSADOR CONTAINER PATTERN

Imagine having an application that (among other things) needs to query the API
server. Instead of it talking to the API server directly, as you did in the previous sec-
tion, you can run kubectl proxy in an ambassador container alongside the main con-
tainer and communicate with the API server through it.

Instead of talking to the API server directly, the app in the main container can con-
nect to the ambassador through HTTP (instead of HTTPS) and let the ambassador
proxy handle the HTTPS connection to the API server, taking care of security trans-
parently (see figure 8.6). It does this by using the files from the default token’s secret
volume.

Container: HTTP Container: ) HTTPS
main ambassador

API server

Pod

Figure 8.6 Using an ambassador to connect to the API server

Because all containers in a pod share the same loopback network interface, your app
can access the proxy through a port on localhost.

RUNNING THE CURL POD WITH AN ADDITIONAL AMBASSADOR CONTAINER

To see the ambassador container pattern in action, you’ll create a new pod like the
curl pod you created earlier, but this time, instead of running a single container in
the pod, you’ll run an additional ambassador container based on a general-purpose
kubectl-proxy container image I've created and pushed to Docker Hub. You’ll find
the Dockerfile for the image in the code archive (in /Chapter08/kubectl-proxy/) if
you want to build it yourself.

The pod’s manifest is shown in the following listing.

Listing 8.15 A pod with an ambassador container: curl-with-ambassador.yaml

apiVersion: vl
kind: Pod
metadata:
name: curl-with-ambassador
spec:
containers:
- name: main



Talking to the Kubernetes API server 245

image: tutum/curl

command: ["sleep", "9999999"]
- name: ambassador The ambassador container,
image: luksa/kubectl-proxy:1.6.2 running the kubectl-proxy image

The pod spec is almost the same as before, but with a different pod name and an addi-
tional container. Run the pod and then enter the main container with

$ kubectl exec -it curl-with-ambassador -c main bash
root@curl-with-ambassador:/#

Your pod now has two containers, and you want to run bash in the main container,
hence the -c main option. You don’t need to specify the container explicitly if you
want to run the command in the pod’s first container. But if you want to run a com-
mand inside any other container, you do need to specify the container’s name using
the -c option.

TALKING TO THE APl SERVER THROUGH THE AMBASSADOR

Next you’ll try connecting to the API server through the ambassador container. By
default, kubectl proxy binds to port 8001, and because both containers in the pod
share the same network interfaces, including loopback, you can point curl to local-
host:8001, as shown in the following listing.

Listing 8.16 Accessing the API server through the ambassador container

root@curl-with-ambassador:/# curl localhost:8001

{
"paths": [
||/api|| ,

Success! The output printed by curl is the same response you saw earlier, but this time
you didn’t need to deal with authentication tokens and server certificates.

To get a clear picture of what exactly happened, refer to figure 8.7. curl sent the
plain HTTP request (without any authentication headers) to the proxy running inside
the ambassador container, and then the proxy sent an HTTPS request to the API
server, handling the client authentication by sending the token and checking the
server’s identity by validating its certificate.

This is a great example of how an ambassador container can be used to hide the
complexities of connecting to an external service and simplify the app running in
the main container. The ambassador container is reusable across many different apps,
regardless of what language the main app is written in. The downside is that an addi-
tional process is running and consuming additional resources.



246

824

CHAPTER 8 Accessing pod metadata and other resources from applications

Container: main

| sleep | | curl |

J GET http://localhost:8001
I

d
Port 8001

Container: ambassador

I kubectl proxy I API server

GET https://kubernetes:443
Authorization: Bearer <tokens

Pod
N J

Figure 8.7 Offloading encryption, authentication, and server verification to kubectl proxy in an
ambassador container

Using client libraries to talk to the API server

If your app only needs to perform a few simple operations on the API server, you can
often use a regular HTTP client library and perform simple HTTP requests, especially
if you take advantage of the kubectl-proxy ambassador container the way you did in
the previous example. But if you plan on doing more than simple API requests, it’s
better to use one of the existing Kubernetes API client libraries.

USING EXISTING CLIENT LIBRARIES
Currently, two Kubernetes API client libraries exist that are supported by the API
Machinery special interest group (SIG):

Golang client—https://github.com/kubernetes/client-go
Python—https://github.com/kubernetes-incubator/client-python

NOTE The Kubernetes community has a number of Special Interest Groups
(SIGs) and Working Groups that focus on specific parts of the Kubernetes
ecosystem. You’ll find a list of them at https://github.com/kubernetes/com-
munity/blob/master/sig-list.md.

In addition to the two officially supported libraries, here’s a list of user-contributed cli-
ent libraries for many other languages:

Java client by FabricS—https:// github.com/fabric8io/kubernetes-client

Java client by Amdatu—nhttps://bitbucket.org/amdatulabs/amdatu-kubernetes
Node.js client by tenxcloud—https:// github.com/tenxcloud/node-kubernetes-client
Node.js client by GoDaddy—nhttps:// github.com/godaddy/kubernetes-client
PHP—https://github.com/devstub/kubernetes-api-php-client

Another PHP client—https:// github.com/maclof/kubernetes-client


https://github.com/kubernetes/client-go
https://github.com/kubernetes-incubator/client-python
https://github.com/kubernetes/community/blob/master/sig-list.md
https://github.com/kubernetes/community/blob/master/sig-list.md
https://github.com/fabric8io/kubernetes-client
https://bitbucket.org/amdatulabs/amdatu-kubernetes
https://github.com/tenxcloud/node-kubernetes-client
https://github.com/godaddy/kubernetes-client
https://github.com/devstub/kubernetes-api-php-client
https://github.com/maclof/kubernetes-client

These
need t

AN EXA

Talking to the Kubernetes API server 247

Ruby—nhttps://github.com/ChO00k/kubr

Another Ruby client—https:// github.com/abonas/kubeclient
Clojure—https: // github.com/yanatanl6/clj-kubernetes-api
Scala—https:// github.com/doriordan/skuber
Perl—https://metacpan.org/pod/Net::Kubernetes

libraries usually support HTTPS and take care of authentication, so you won’t
o use the ambassador container.

MPLE OF INTERACTING WITH KUBERNETES WITH THE FABRIC8 JAVA CLIENT

To give you a sense of how client libraries enable you to talk to the API server, the fol-
lowing listing shows an example of how to list services in a Java app using the Fabric8
Kubernetes client.

Listing 8.17 Listing, creating, updating, and deleting pods with the Fabric8 Java client

import
import
import
import
import

public
publ

java.util.Arrays;
io.fabric8.kubernetes.api.model.Pod;
io.fabric8.kubernetes.api.model.PodList;
io.fabric8.kubernetes.client.DefaultKubernetesClient;
io.fabric8.kubernetes.client.KubernetesClient;

class Test {
ic static void main(String[] args) throws Exception {

KubernetesClient client = new DefaultKubernetesClient () ;

//

Po
po

//

list pods in the default namespace
dList pods = client.pods () .inNamespace ("default") .list();
ds.getItems () .stream()
.forEach(s -> System.out.println("Found pod: " +
s.getMetadata () .getName ())) ;

create a pod

System.out.println("Creating a pod") ;

Po

Sy

//
cl

d pod = client.pods () .inNamespace ("default")
.createNew ()
.withNewMetadata ()
.withName ("programmatically-created-pod")
.endMetadata ()
.withNewSpec ()
.addNewContainer ()
.withName ("main")
.withImage ("busybox")
.withCommand (Arrays.asList ("sleep", "99999"))
.endContainer ()
.endSpec ()
.done () ;
stem.out.println("Created pod: " + pod) ;

edit the pod (add a label to it)
ient.pods () .inNamespace ("default™")
.withName ("programmatically-created-pod")
.edit ()

.editMetadata ()


https://github.com/Ch00k/kubr
https://github.com/abonas/kubeclient
https://github.com/yanatan16/clj-kubernetes-api
https://github.com/doriordan/skuber
https://metacpan.org/pod/Net::Kubernetes

248

CHAPTER 8 Accessing pod metadata and other resources from applications

.addToLabels ("foo", "bar")
.endMetadata ()
.done () ;
System.out.println("Added label foo=bar to pod") ;

System.out.println("Waiting 1 minute before deleting pod...");
Thread.sleep (60000) ;

// delete the pod

client.pods () .inNamespace ("default™")
.withName ("programmatically-created-pod")
.delete() ;

System.out.println("Deleted the pod") ;

The code should be self-explanatory, especially because the Fabric8 client exposes
a nice, fluent Domain-Specific-Language (DSL) API, which is easy to read and
understand.

BUILDING YOUR OWN LIBRARY WITH SWAGGER AND OPENAPI
If no client is available for your programming language of choice, you can use the
Swagger API framework to generate the client library and documentation. The Kuber-
netes API server exposes Swagger API definitions at /swaggerapi and OpenAPI spec at
/swagger.json.

To find out more about the Swagger framework, visit the website at http://swagger.io.

EXPLORING THE APl WITH SWAGGER Ul
Earlier in the chapter I said I'd point you to a better way of exploring the REST API
instead of hitting the REST endpoints with curl. Swagger, which I mentioned in the
previous section, is not just a tool for specifying an API, but also provides a web UI for
exploring REST APIs if they expose the Swagger API definitions. The better way of
exploring REST APIs is through this Ul

Kubernetes not only exposes the Swagger API, but it also has Swagger UI inte-
grated into the API server, though it’s not enabled by default. You can enable it by
running the API server with the --enable-swagger-ui=true option.

TIP If you're using Minikube, you can enable Swagger UI when starting the
cluster: minikube start --extra-config=apiserver.Features.Enable-
SwaggerUI=true

After you enable the UI, you can open it in your browser by pointing it to:

http(s) ://<api servers:<ports/swagger-ui

I urge you to give Swagger UI a try. It not only allows you to browse the Kubernetes
API, but also interact with it (you can POST JSON resource manifests, PATCH resources,
or DELETE them, for example).


http://swagger.io

8.3

Summary 249

Summary
After reading this chapter, you now know how your app, running inside a pod, can get

data about itself, other pods, and other components deployed in the cluster. You've
learned

How a pod’s name, namespace, and other metadata can be exposed to the pro-
cess either through environment variables or files in a downwardAPI volume
How CPU and memory requests and limits are passed to your app in any unit
the app requires

How a pod can use downwardAPI volumes to get up-to-date metadata, which
may change during the lifetime of the pod (such as labels and annotations)
How you can browse the Kubernetes REST API through kubectl proxy

How pods can find the API server’s location through environment variables or
DNS, similar to any other Service defined in Kubernetes

How an application running in a pod can verify that it’s talking to the API
server and how it can authenticate itself

How using an ambassador container can make talking to the API server from
within an app much simpler

How client libraries can get you interacting with Kubernetes in minutes

In this chapter, you learned how to talk to the API server, so the next step is learning
more about how it works. You’ll do that in chapter 11, but before we dive into such
details, you still need to learn about two other Kubernetes resources—Deployments
and StatefulSets. They’re explained in the next two chapters.



Deployments: updating
applications declaratively

This chapter covers

Replacing pods with newer versions

Updating managed pods

Updating pods declaratively using Deployment
resources

Performing rolling updates

Automatically blocking rollouts of bad versions
Controlling the rate of the rollout

Reverting pods to a previous version

You now know how to package your app components into containers, group them
into pods, provide them with temporary or permanent storage, pass both secret
and non-secret config data to them, and allow pods to find and talk to each other.
You know how to run a full-fledged system composed of independently running
smaller components—microservices, if you will. Is there anything else?

Eventually, you’re going to want to update your app. This chapter covers how to
update apps running in a Kubernetes cluster and how Kubernetes helps you move
toward a true zero-downtime update process. Although this can be achieved using
only ReplicationControllers or ReplicaSets, Kubernetes also provides a Deployment

250



9.1

Updating applications running in pods 251

resource that sits on top of ReplicaSets and enables declarative application updates. If
you’re not completely sure what that means, keep reading—it’s not as complicated as
it sounds.

Updating applications running in pods

Let’s start off with a simple example. Imagine having a set of pod instances providing a
service to other pods and/or external clients. After reading this book up to this point,
you likely recognize that these pods are backed by a ReplicationController or a
ReplicaSet. A Service also exists through which clients (apps running in other pods or
external clients) access the pods. This is how a basic application looks in Kubernetes
(shown in figure 9.1).

Clients EEE— Service

1 ¥

() (=) ()

t J

ReplicationController
or ReplicaSet

Figure 9.1 The basic outline of an
application running in Kubernetes

Initially, the pods run the first version of your application—let’s suppose its image is
tagged as v1. You then develop a newer version of the app and push it to an image
repository as a new image, tagged as v2. You’d next like to replace all the pods with
this new version. Because you can’t change an existing pod’s image after the pod is
created, you need to remove the old pods and replace them with new ones running
the new image.

You have two ways of updating all those pods. You can do one of the following:

Delete all existing pods first and then start the new ones.

Start new ones and, once they’re up, delete the old ones. You can do this either
by adding all the new pods and then deleting all the old ones at once, or
sequentially, by adding new pods and removing old ones gradually.

Both these strategies have their benefits and drawbacks. The first option would lead to
a short period of time when your application is unavailable. The second option
requires your app to handle running two versions of the app at the same time. If your
app stores data in a data store, the new version shouldn’t modify the data schema or
the data in such a way that breaks the previous version.



252

9.11

A

CHAPTER 9  Deployments: updating applications declaratively

How do you perform these two update methods in Kubernetes? First, let’s look at
how to do this manually; then, once you know what’s involved in the process, you’ll
learn how to have Kubernetes perform the update automatically.

Deleting old pods and replacing them with new ones

You already know how to get a ReplicationController to replace all its pod instances
with pods running a new version. You probably remember the pod template of a
ReplicationController can be updated at any time. When the ReplicationController
creates new instances, it uses the updated pod template to create them.

If you have a ReplicationController managing a set of vl pods, you can easily
replace them by modifying the pod template so it refers to version v2 of the image and
then deleting the old pod instances. The ReplicationController will notice that no
pods match its label selector and it will spin up new instances. The whole process is
shown in figure 9.2.

¥ ¥

le--n
le--n

[Pod: V1J Pod: v1 [Pod: V1J [Pod: V1J Pod: V1J [Poc:: V1J %

S I O I "1t "9 1t

ReplicationController ReplicationController ReplicationController ReplicationController
Pod > Pod > Pod > Pod
template: v1 template: v2 template: v2 template: v2
Pod template vl pods deleted v2 pods created by
changed manually ReplicationController

Short period of
downtime here

Figure 9.2 Updating pods by changing a ReplicationController’s pod template and deleting old Pods

9.1.2

This is the simplest way to update a set of pods, if you can accept the short downtime
between the time the old pods are deleted and new ones are started.

Spinning up new pods and then deleting the old ones

If you don’t want to see any downtime and your app supports running multiple ver-
sions at once, you can turn the process around and first spin up all the new pods and



Updating applications running in pods 253

only then delete the old ones. This will require more hardware resources, because
you’ll have double the number of pods running at the same time for a short while.

This is a slightly more complex method compared to the previous one, but you
should be able to do it by combining what you’ve learned about ReplicationControl-
lers and Services so far.

SWITCHING FROM THE OLD TO THE NEW VERSION AT ONCE

Pods are usually fronted by a Service. It’s possible to have the Service front only the
initial version of the pods while you bring up the pods running the new version. Then,
once all the new pods are up, you can change the Service’s label selector and have the
Service switch over to the new pods, as shown in figure 9.3. This is called a blue-green
deployment. After switching over, and once you’re sure the new version functions cor-
rectly, you're free to delete the old pods by deleting the old ReplicationController.

NOTE You can change a Service’s pod selector with the kubectl set selec-
tor command.

T
o
Qo
<
3
—
o
o
&
<
X
T

od: V1J [Pod: v2

~—

[posi 2 [pos2) | [t [Pt o1 (pos 2] os 2]

1t

ReplicationController:
vi

Pod
template: v1

ReplicationController:
v2

Pod
template: v2

.t

.t

ReplicationController:
vi

Pod
template: v1

ReplicationController:
V2

Pod
template: v2

Figure 9.3 Switching a Service from the old pods to the new ones

PERFORMING A ROLLING UPDATE

Instead of bringing up all the new pods and deleting the old pods at once, you can
also perform a rolling update, which replaces pods step by step. You do this by slowly
scaling down the previous ReplicationController and scaling up the new one. In this
case, you'll want the Service’s pod selector to include both the old and the new pods,
so it directs requests toward both sets of pods. See figure 9.4.

Doing a rolling update manually is laborious and error-prone. Depending on the
number of replicas, you’d need to run a dozen or more commands in the proper
order to perform the update process. Luckily, Kubernetes allows you to perform the
rolling update with a single command. You’ll learn how in the next section.



254

CHAPTER 9  Deployments: updating applications declaratively

Service Service

T

)

]

)

]

Replication Replication Replication Replication Replication Replication Replication Replication
Controller: Controller: Controller: Controller: Controller: Controller: Controller: Controller:
v1 v2 vi v2 vi v2 vi v2

)

]

)

]

Figure 9.4 A rolling update of pods using two ReplicationControllers

9.2

9.21

Performing an automatic rolling update with a
ReplicationController

Instead of performing rolling updates using ReplicationControllers manually, you can
have kubectl perform them. Using kubectl to perform the update makes the process
much easier, but, as you’ll see later, this is now an outdated way of updating apps. Nev-
ertheless, we’ll walk through this option first, because it was historically the first way of
doing an automatic rolling update, and also allows us to discuss the process without
introducing too many additional concepts.

Running the initial version of the app

Obviously, before you can update an app, you need to have an app deployed. You're
going to use a slightly modified version of the kubia Node]S app you created in chap-
ter 2 as your initial version. In case you don’t remember what it does, it’s a simple web-
app that returns the pod’s hostname in the HTTP response.

CREATING THE V1 APP

You’ll change the app so it also returns its version number in the response, which will
allow you to distinguish between the different versions you’re about to build. I've
already built and pushed the app image to Docker Hub under luksa/kubia:vl. The
following listing shows the app’s code.

Listing 9.1 The v1 version of our app: v1/app.js

const http = require('http');
const os = require('os');

console.log("Kubia server starting...");



Performing an automatic rolling update with a ReplicationController 255

var handler = function(request, response) {
console.log("Received request from " + request.connection.remoteAddress) ;
response.writeHead (200) ;
response.end("This is vl running in pod " + os.hostname() + "\n");

}i

var www = http.createServer (handler) ;
www.listen (8080) ;

RUNNING THE APP AND EXPOSING IT THROUGH A SERVICE USING A SINGLE YAML FILE

To run your app, you’ll create a ReplicationController and a LoadBalancer Service to
enable you to access the app externally. This time, rather than create these two
resources separately, you'll create a single YAML for both of them and post it to the
Kubernetes API with a single kubectl create command. A YAML manifest can con-
tain multiple objects delimited with a line containing three dashes, as shown in the
following listing.

Listing 9.2 A YAML containing an RC and a Service: kubia-rc-and-service-vli.yaml

apiVersion: vl
kind: ReplicationController
metadata:

name: kubia-vl
spec:

replicas: 3

template:

metadata:
name: kubia

labels:
app: kubia

spec:
containers: You’re creating a
- image: luksa/kubia:vl ReplicationController for

name: nodejs pods running this image.

o The Service fronts all

apiVersion: vl YAML files can contain pods created by the
kind: Service multiple resource ReplicationControlIer.
metadata: definitions separated by

name: kubia a line with three dashes.
spec:

type: LoadBalancer
selector:

app: kubia
ports:

- port: 80
targetPort: 8080

The YAML defines a ReplicationController called kubia-vl and a Service called
kubia. Go ahead and post the YAML to Kubernetes. After a while, your three v1 pods
and the load balancer should all be running, so you can look up the Service’s external
IP and start hitting the service with curl, as shown in the following listing.



256

9.2.2

CHAPTER 9  Deployments: updating applications declaratively

Listing 9.3 Getting the Service’s external IP and hitting the service in a loop with curl

$ kubectl get svc kubia

NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
kubia 10.3.246.195 130.211.109.222 80:32143/TCP 5m
$ while true; do curl http://130.211.109.222; done

This is vl running in pod kubia-v1l-grl92

This is v1 running in pod kubia-vl-kbtsk

This is vl running in pod kubia-v1-grl92

This is v1 running in pod kubia-vl-2321o

NOTE If you're using Minikube or any other Kubernetes cluster where load
balancer services aren’t supported, you can use the Service’s node port to
access the app. This was explained in chapter 5.

Performing a rolling update with kubectl

Next you’ll create version 2 of the app. To keep things simple, all you’ll do is change
the response to say, “This is v2”:

response.end ("This is v2 running in pod " + os.hostname() + "\n");

This new version is available in the image luksa/kubia:v2 on Docker Hub, so you
don’t need to build it yourself.

Pushing updates to the same image tag

Modifying an app and pushing the changes to the same image tag isn’t a good idea,
but we all tend to do that during development. If you're modifying the latest tag,
that’s not a problem, but when you’re tagging an image with a different tag (for exam-
ple, tag v1 instead of latest), once the image is pulled by a worker node, the image
will be stored on the node and not pulled again when a new pod using the same
image is run (at least that’s the default policy for pulling images).

That means any changes you make to the image won’t be picked up if you push them
to the same tag. If a new pod is scheduled to the same node, the Kubelet will run the
old version of the image. On the other hand, nodes that haven’t run the old version
will pull and run the new image, so you might end up with two different versions of
the pod running. To make sure this doesn’t happen, you need to set the container’s
imagePullPolicy property to Always.

You need to be aware that the default imagePullPolicy depends on the image tag.
If a container refers to the latest tag (either explicitly or by not specifying the tag at
all), imagePullPolicy defaults to Always, but if the container refers to any other
tag, the policy defaults to IfNotPresent.

When using a tag other than latest, you need to set the imagePullPolicy properly
if you make changes to an image without changing the tag. Or better yet, make sure
you always push changes to an image under a new tag.



Performing an automatic rolling update with a ReplicationController 257

Keep the curl loop running and open another terminal, where you’ll get the rolling
update started. To perform the update, you’ll run the kubectl rolling-update com-
mand. All you need to do is tell it which ReplicationController you’re replacing, give a
name for the new ReplicationController, and specify the new image you’d like to
replace the original one with. The following listing shows the full command for per-
forming the rolling update.

Listing 9.4 Initiating a rolling-update of a ReplicationController using kubectl

$ kubectl rolling-update kubia-vl kubia-v2 --image=luksa/kubia:v2

Created kubia-v2

Scaling up kubia-v2 from 0 to 3, scaling down kubia-vl from 3 to 0 (keep 3
pods available, don't exceed 4 pods)

Because you're replacing ReplicationController kubia-v1 with one running version 2
of your kubia app, you’d like the new ReplicationController to be called kubia-v2
and use the luksa/kubia:v2 container image.

When you run the command, a new ReplicationController called kubia-v2 is cre-
ated immediately. The state of the system at this point is shown in figure 9.5.

I8 N
[ Pod: v1 ] [ Pod: v1 ] [ Pod: v1 ] i No v2 pods yet |

ReplicationController: kubia-v1 ReplicationController: kubia-v2
Image: kubia/v1l Image: kubia/v2
Replicas: 3 Replicas: 0

Figure 9.5 The state of the system immediately after starting the rolling update

The new ReplicationController’s pod template references the luksa/kubia:v2 image
and its initial desired replica count is set to 0, as you can see in the following listing.

Listing 9.5 Describing the new ReplicationController created by the rolling update

$ kubectl describe rc kubia-v2 The new

Name : kubia-v2 ReplicationController
Namespace: default refers to the v2 image.
Image (s) : luksa/kubia:v2

Selector: app=kubia,deployment=757d16a0f02f6a5c387f2b5edb62b155
Labels: app=kubia

Replicas: 0 current / 0 desired <F44‘Inkh"ythedeshed
’

number of replicas is zero.



258

CHAPTER 9  Deployments: updating applications declaratively

UNDERSTANDING THE STEPS PERFORMED BY KUBECTL BEFORE THE ROLLING UPDATE COMMENCES
kubectl created this ReplicationController by copying the kubia-v1 controller and
changing the image in its pod template. If you look closely at the controller’s label
selector, you’ll notice it has been modified, too. It includes not only a simple
app=kubia label, but also an additional deployment label which the pods must have in
order to be managed by this ReplicationController.

You probably know this already, but this is necessary to avoid having both the new
and the old ReplicationControllers operating on the same set of pods. But even if pods
created by the new controller have the additional deployment label in addition to the
app=kubia label, doesn’t this mean they’ll be selected by the first ReplicationControl-
ler’s selector, because it’s set to app=kubia?

Yes, that’s exactly what would happen, but there’s a catch. The rolling-update pro-
cess has modified the selector of the first ReplicationController, as well:

$ kubectl describe rc kubia-vl

Name : kubia-vl
Namespace: default
Image (s) : luksa/kubia:vl

Selector: app=kubia,deployment=3ddd307978b502a5b975ed4045ae4964-orig

Okay, but doesn’t this mean the first controller now sees zero pods matching its selec-
tor, because the three pods previously created by it contain only the app=kubia label?
No, because kubectl had also modified the labels of the live pods just before modify-
ing the ReplicationController’s selector:

$ kubectl get po --show-labels

NAME READY STATUS RESTARTS AGE LABELS

kubia-vli-m33mv 1/1 Running 0 2m app=kubia,deployment=3ddd...
kubia-vl-nmzw9 1/1 Running 0 2m app=kubia,deployment=3ddd...
kubia-vl-cdtey 1/1 Running 0 2m app=kubia,deployment=3ddd...

If this is getting too complicated, examine figure 9.6, which shows the pods, their
labels, and the two ReplicationControllers, along with their pod selectors.

deployment: 3ddd... deployment: 3ddd... deployment: 3ddd...

ReplicationController: kubia-v1 ReplicationController: kubia-v2
Replicas: 3 Replicas: 0
Selector: app=kubia, Selector: app=kubia,
deployment=3ddd... deployment=757d. ..

Figure 9.6 Detailed state of the old and new ReplicationControllers and pods at the start of a rolling
update



Performing an automatic rolling update with a ReplicationController 259

kubectl had to do all this before even starting to scale anything up or down. Now
imagine doing the rolling update manually. It’s easy to see yourself making a mistake
here and possibly having the ReplicationController kill off all your pods—pods that
are actively serving your production clients!

REPLACING OLD PODS WITH NEW ONES BY SCALING THE TWO REPLICATIONCONTROLLERS

After setting up all this, kubectl starts replacing pods by first scaling up the new
controller to 1. The controller thus creates the first v2 pod. kubectl then scales
down the old ReplicationController by 1. This is shown in the next two lines printed
by kubectl:

Scaling kubia-v2 up to 1
Scaling kubia-vl down to 2

Because the Service is targeting all pods with the app=kubia label, you should start see-
ing your curl requests redirected to the new v2 pod every few loop iterations:

This is v2 running in pod kubia-v2-nmzw9

This is vl running in pod kubia-vl-kbtsk Requests hitting the pod

This is vl running in pod kubia-v1-23210 running the new version
This is v2 running in pod kubia-v2-nmzw9

Figure 9.7 shows the current state of the system.

Service
Selector: app=kubia

curl ——

|-
-

app: kubia
deployment: 3ddd...

app: kubia

deployment: 3ddd...

app: kubia

deployment: 757d...

ReplicationController: kubia-v1 ReplicationController: kubia-v2
Replicas: 2 Replicas: 1
Selector: app=kubia, Selector: app=kubia,
deployment=3ddd... deployment=757d...

Figure 9.7 The Service is redirecting requests to both the old and new pods during the
rolling update.

As kubectl continues with the rolling update, you start seeing a progressively bigger
percentage of requests hitting v2 pods, as the update process deletes more of the v1
pods and replaces them with those running your new image. Eventually, the original



260

9.2.3

CHAPTER 9  Deployments: updating applications declaratively

ReplicationController is scaled to zero, causing the last v1 pod to be deleted, which
means the Service will now be backed by v2 pods only. At that point, kubectl will
delete the original ReplicationController and the update process will be finished, as
shown in the following listing.

Listing 9.6 The final steps performed by kubectl rolling-update

Scaling kubia-v2 up to 2

Scaling kubia-vl down to 1

Scaling kubia-v2 up to 3

Scaling kubia-vl down to 0

Update succeeded. Deleting kubia-vl

replicationcontroller "kubia-vl" rolling updated to "kubia-v2"

You're now left with only the kubia-v2 ReplicationController and three v2 pods. All
throughout this update process, you’ve hit your service and gotten a response every
time. You have, in fact, performed a rolling update with zero downtime.

Understanding why kubectl rolling-update is now obsolete

At the beginning of this section, I mentioned an even better way of doing updates
than through kubectl rolling-update. What’s so wrong with this process that a bet-
ter one had to be introduced?

Well, for starters, I, for one, don’t like Kubernetes modifying objects I've created.
Okay, it’s perfectly fine for the scheduler to assign a node to my pods after I create
them, but Kubernetes modifying the labels of my pods and the label selectors of my
ReplicationControllers is something that I don’t expect and could cause me to go
around the office yelling at my colleagues, “Who’s been messing with my controllers!?!?”

But even more importantly, if you’ve paid close attention to the words I've used,
you probably noticed that all this time I said explicitly that the kubectl client was the
one performing all these steps of the rolling update.

You can see this by turning on verbose logging with the --v option when triggering
the rolling update:

$ kubectl rolling-update kubia-vl kubia-v2 --image=luksa/kubia:v2 --v 6

TIP  Using the --v 6 option increases the logging level enough to let you see
the requests kubect1 is sending to the API server.

Using this option, kubect1 will print out each HTTP request it sends to the Kuberne-
tes API server. You’ll see PUT requests to

/api/vl/namespaces/default/replicationcontrollers/kubia-vl

which is the RESTful URL representing your kubia-v1 ReplicationController resource.
These requests are the ones scaling down your ReplicationController, which shows



9.3

Using Deployments for updating apps declaratively 261

that the kubectl client is the one doing the scaling, instead of it being performed by
the Kubernetes master.

TIP  Use the verbose logging option when running other kubectl commands,
to learn more about the communication between kubectl and the API server.

But why is it such a bad thing that the update process is being performed by the client
instead of on the server? Well, in your case, the update went smoothly, but what if you
lost network connectivity while kubectl was performing the update? The update pro-
cess would be interrupted mid-way. Pods and ReplicationControllers would end up in
an intermediate state.

Another reason why performing an update like this isn’t as good as it could be is
because it’s imperative. Throughout this book, I've stressed how Kubernetes is about
you telling it the desired state of the system and having Kubernetes achieve that
state on its own, by figuring out the best way to do it. This is how pods are deployed
and how pods are scaled up and down. You never tell Kubernetes to add an addi-
tional pod or remove an excess one—you change the number of desired replicas
and that’s it.

Similarly, you will also want to change the desired image tag in your pod defini-
tions and have Kubernetes replace the pods with new ones running the new image.
This is exactly what drove the introduction of a new resource called a Deployment,
which is now the preferred way of deploying applications in Kubernetes.

Using Deployments for updating apps declaratively

A Deployment is a higher-level resource meant for deploying applications and
updating them declaratively, instead of doing it through a ReplicationController or
a ReplicaSet, which are both considered lower-level concepts.

When you create a Deployment, a ReplicaSet resource is created underneath
(eventually more of them). As you may remember from chapter 4, ReplicaSets are a
new generation of ReplicationControllers, and should be used instead of them. Replica-
Sets replicate and manage pods, as well. When using a Deployment, the actual pods
are created and managed by the Deployment’s ReplicaSets, not by the Deployment
directly (the relationship is shown in figure 9.8).

Deployment ReplicaSet —>( Pods Figure 9.8 A Deployment is backed
by a ReplicaSet, which supervises the
deployment’s pods.

You might wonder why you’d want to complicate things by introducing another object
on top of a ReplicationController or ReplicaSet, when they’re what suffices to keep a set
of pod instances running. As the rolling update example in section 9.2 demonstrates,
when updating the app, you need to introduce an additional ReplicationController and



262

9.3.1

CHAPTER 9  Deployments: updating applications declaratively

coordinate the two controllers to dance around each other without stepping on each
other’s toes. You need something coordinating this dance. A Deployment resource
takes care of that (it’s not the Deployment resource itself, but the controller process
running in the Kubernetes control plane that does that; but we’ll get to that in chap-
ter 11).

Using a Deployment instead of the lower-level constructs makes updating an app
much easier, because you're defining the desired state through the single Deployment
resource and letting Kubernetes take care of the rest, as you'll see in the next few pages.

Creating a Deployment

Creating a Deployment isn’t that different from creating a ReplicationController. A
Deployment is also composed of a label selector, a desired replica count, and a pod
template. In addition to that, it also contains a field, which specifies a deployment
strategy that defines how an update should be performed when the Deployment
resource is modified.

CREATING A DEPLOYMENT MANIFEST

Let’s see how to use the kubia-v1 ReplicationController example from earlier in this
chapter and modify it so it describes a Deployment instead of a ReplicationController.
As you’ll see, this requires only three trivial changes. The following listing shows the
modified YAML.

Listing 9.7 A Deployment definition: kubia-deployment-v1.yaml

apiversion: apps /vlbetal Deployments are in the apps
kind: Deployment API group, version vibetal.
metadata:

name: kubia You’ve changed the kind
spec: from ReplicationController

replicas: 3 to Deployment.

template:

metadata:

There’s no need to include
the version in the name of
the Deployment.

name: kubia
labels:
app: kubia
spec:
containers:
- image: luksa/kubia:vl
name: nodejs

NOTE You’ll find an older version of the Deployment resource in extensions/
vlbetal, and a newer one in apps/vlbeta2 with different required fields and
different defaults. Be aware that kubectl explain shows the older version.

Because the ReplicationController from before was managing a specific version of the
pods, you called it kubia-v1. A Deployment, on the other hand, is above that version
stuff. A