note.wcoder.com
wcoder GitHub

Table of Contents

分布式技术栈

构建分布式系统的目的是增加系统容量,提高系统的可用性,转换成技术方面,也就是完成下面两件事。

  • 大流量处理。通过集群技术把大规模并发请求的负载分散到不同的机器上。
  • 关键业务保护。提高后台服务的可用性,把故障隔离起来阻止多米诺骨牌效应(雪崩效应)。如果流量过大,需要对业务降级,以保护关键业务流转。

说白了就是干两件事。一是提高整体架构的吞吐量,服务更多的并发和流量,二是为了提高系统的稳定性,让系统的可用性更高。

分布式ID

  • CosId 国产
  • SnowflakeId 国产

提高架构的性能

  • 缓存系统。加入缓存系统,可以有效地提高系统的访问能力。从前端的浏览器,到网络,再到后端的服务,底层的数据库、文件系统、硬盘和 CPU,全都有缓存,这是提高快速访问能力最有效的手段。对于分布式系统下的缓存系统,需要的是一个缓存集群。这其中需要一个 Proxy 来做缓存的分片和路由。

  • 负载均衡系统,是做水平扩展的关键技术。其可以用多台机器来共同分担一部分流量请求。

  • 异步调用。异步系统主要通过消息队列来对请求做排队处理,这样可以把前端的请求的峰值给“削平”了,而后端通过自己能够处理的速度来处理请求。这样可以增加系统的吞吐量,但是实时性就差很多了。同时,还会引入消息丢失的问题,所以要对消息做持久化,这会造成“有状态”的结点,从而增加了服务调度的难度。

  • 数据分区和数据镜像。数据分区是把数据按一定的方式分成多个区(比如通过地理位置),不同的数据区来分担不同区的流量。这需要一个数据路由的中间件,会导致跨库的 Join 和跨库的事务非常复杂。而数据镜像是把一个数据库镜像成多份一样的数据,这样就不需要数据路由的中间件了。你可以在任意结点上进行读写,内部会自行同步数据。然而,数据镜像中最大的问题就是数据的一致性问题。

对于一般公司来说,在初期,会使用读写分离的数据镜像方式,而后期会采用分库分表的方式。

提高架构的稳定性


  • 服务拆分,主要有两个目的:一是为了隔离故障,二是为了重用服务模块。但服务拆分完之后,会引入服务调用间的依赖问题。

  • 服务冗余,是为了去除单点故障,并可以支持服务的弹性伸缩,以及故障迁移。然而,对于一些有状态的服务来说,冗余这些有状态的服务带来了更高的复杂性。其中一个是弹性伸缩时,需要考虑数据的复制或是重新分片,迁移的时候还要迁移数据到其它机器上。

  • 限流降级。当系统实在扛不住压力时,只能通过限流或者功能降级的方式来停掉一部分服务,或是拒绝一部分用户,以确保整个架构不会挂掉。这些技术属于保护措施。

  • 高可用架构,通常来说是从冗余架构的角度来保障可用性。比如,多租户隔离,灾备多活,或是数据可以在其中复制保持一致性的集群。总之,就是为了不出单点故障。

  • 高可用运维,指的是 DevOps 中的 CI(持续集成)/CD(持续部署)。一个良好的运维应该是一条很流畅的软件发布管线,其中做了足够的自动化测试,还可以做相应的灰度发布,以及对线上系统的自动化控制。这样,可以做到“计划内”或是“非计划内”的宕机事件的时长最短。

上述这些技术非常有技术含量,而且需要投入大量的时间和精力。

分布式系统的关键技术

而通过上面的分析,我们可以看到,引入分布式系统,会引入一堆技术问题,需要从以下几个方面来解决。

  • 服务治理。服务拆分、服务调用、服务发现,服务依赖,服务的关键度定义……服务治理的最大意义是需要把服务间的依赖关系、服务调用链,以及关键的服务给梳理出来,并对这些服务进行性能和可用性方面的管理。

  • 架构软件管理。服务之间有依赖,而且有兼容性问题,所以,整体服务所形成的架构需要有架构版本管理、整体架构的生命周期管理,以及对服务的编排、聚合、事务处理等服务调度功能。

  • DevOps。分布式系统可以更为快速地更新服务,但是对于服务的测试和部署都会是挑战。所以,还需要 DevOps 的全流程,其中包括环境构建、持续集成、持续部署等。

  • 自动化运维。有了 DevOps 后,我们就可以对服务进行自动伸缩、故障迁移、配置管理、状态管理等一系列的自动化运维技术了。

  • 资源调度管理。应用层的自动化运维需要基础层的调度支持,也就是云计算 IaaS 层的计算、存储、网络等资源调度、隔离和管理。

  • 整体架构监控。如果没有一个好的监控系统,那么自动化运维和资源调度管理只可能成为一个泡影,因为监控系统是你的眼睛。没有眼睛,没有数据,就无法进行高效的运维。所以说,监控是非常重要的部分。这里的监控需要对三层系统(应用层、中间件层、基础层)进行监控。

  • 流量控制。最后是我们的流量控制,负载均衡、服务路由、熔断、降级、限流等和流量相关的调度都会在这里,包括灰度发布之类的功能也在这里。

此时,你会发现,要做好这么多的技术,或是要具备这么多的能力,简直就是一个门槛,是一个成本巨高无比的技术栈,看着就都头晕。要实现出来得投入多少人力、物力和时间啊。是的,这就是分布式系统中最大的坑。

不过,我们应该庆幸自己生活在了一个非常不错的年代。今天有一个技术叫——Docker,通过 Docker 以及其衍生出来的 Kubernetes 之类的软件或解决方案,大大地降低了做上面很多事情的门槛。Docker 把软件和其运行的环境打成一个包,然后比较轻量级地启动和运行。在运行过程中,因为软件变成了服务可能会改变现有的环境。但是没关系,当你重新启动一个 Docker 的时候,环境又会变成初始化状态。

这样一来,我们就可以利用 Docker 的这个特性来把软件在不同的机器上进行部署、调度和管理。如果没有 Docker 或是 Kubernetes,那么你可以认为我们还活在“原始时代”。现在你知道为什么 Docker 这样的容器化虚拟化技术是未来了吧。因为分布式系统已经是完全不可逆转的技术趋势了。

但是,上面还有很多的技术是 Docker 及其周边技术没有解决的,所以,依然还有很多事情要做。那么,如果是一个一个地去做这些技术的话,就像是我们在撑开一张网里面一个一个的网眼,本质上这是使蛮力的做法。我们希望可以找到系统的“纲”,一把就能张开整张网。那么,这个纲在哪里呢?

分布式系统的“纲”

总结一下上面讲述的内容,你不难发现,分布式系统有五个关键技术,它们是:

  • 全栈系统监控;
  • 服务 / 资源调度;
  • 流量调度;
  • 状态 / 数据调度;
  • 开发和运维的自动化。

而最后一项——开发和运维的自动化,是需要把前四项都做到了,才有可能实现的。所以,最为关键是下面这四项技术,即应用整体监控、资源和服务调度、状态和数据调度及流量调度,它们是构建分布式系统最最核心的东西。

全栈监控

监控系统需要完成的功能为:

  • 全栈监控;
  • 关联分析;
  • 跨系统调用的串联;
  • 实时报警和自动处置;
  • 系统性能分析。

多层体系的监控

所谓全栈监控,其实就是三层监控。

  • 基础层:监控主机和底层资源。比如:CPU、内存、网络吞吐、硬盘 I/O、硬盘使用等。
  • 中间层:就是中间件层的监控。比如:Nginx、Redis、ActiveMQ、Kafka、MySQL、Tomcat 等。
  • 应用层:监控应用层的使用。比如:HTTP 访问的吞吐量、响应时间、返回码、调用链路分析、性能瓶颈,还包括用户端的监控。

这还需要一些监控的标准化。

  • 日志数据结构化;
  • 监控数据格式标准化;
  • 统一的监控平台;
  • 统一的日志分析。

服务调度

服务治理上的一些关键技术,主要有以下几点。

  • 服务关键程度
  • 服务依赖关系
  • 服务发现
  • 整个架构的版本管理
  • 服务应用生命周期全管理

流量与数据调度

流量调度的主要功能

对于一个流量调度系统来说,其应该具有的主要功能是:

  1. 依据系统运行的情况,自动地进行流量调度,在无需人工干预的情况下,提升整个系统的稳定性;
  2. 让系统应对爆品等突发事件时,在弹性计算扩缩容的较长时间窗口内或底层资源消耗殆尽的情况下,保护系统平稳运行。

这还是为了提高系统架构的稳定性和高可用性。

此外,这个流量调度系统还可以完成以下几方面的事情。

  • 服务流控。服务发现、服务路由、服务降级、服务熔断、服务保护等。
  • 流量控制。负载均衡、流量分配、流量控制、异地灾备(多活)等。
  • 流量管理。协议转换、请求校验、数据缓存、数据计算等。

所有的这些都应该是一个 API Gateway 应该做的事。

流量调度的关键技术

但是,作为一个 API Gateway 来说,因为要调度流量,首先需要扛住流量,而且还需要有一些比较轻量的业务逻辑,所以一个好的 API Gateway 需要具备以下的关键技术。

  1. 高性能。使用高性能的语言。

  2. 扛流量。需要使用集群技术,在集群内的各个结点中共享数据。像 Paxos、Raft、Gossip 这样的通讯协议 Gateway 需要部署在广域网上,集群的分组技术。

  3. 业务逻辑。简单的业务逻辑,像 AWS 的 Lambda 服务一样,可注入不同语言的简单业务逻辑。

  4. 服务化。通过 Admin API 来不停机地管理配置变更的,而不是通过一个.conf 文件来人肉地修改配置。


← Previous Next →
Less
More