note.wcoder.com
wcoder GitHub

Table of Contents

kaggle

HQ open datasets

Open Images dataset

deepmind-research

cocodataset

数据集仓库UCI Machine Learning Repository

Data Repositories – Mother’s Milk for Data Scientists
数据挖掘中的大数据集

一键搜索,免费获取,直接链接到原始数据库,帮你快速找到合适的数据集。

根据「类别」,这个网站共分为18类,比如Humans、Geospatial、Autonomous Cars、Retail、3D等。

可以选择这些「限定」:任务类型,标签格式,最小图像数量。

其中任务类型主要包括,图像分割,目标检测、图像分类、姿态估计、视觉推理、3D重建、视频分类。

标签格式包括,YOLO、PASCAL、COCO以及Segmentation。
https://datasets.bifrost.ai/

其它公开数据集

tianchi天池

https://tianchi.aliyun.com/dataset

openml

https://www.openml.org

中文 数据集

https://ai.tencent.com/ailab/nlp/en/data/Tencent_AILab_ChineseEmbedding.tar.gz

https://chinesenlp.xyz/#/zh/

中文NLP资源库

MNIST

MINST数据库是由Yann提供的手写数字数据库文件,其官方下载地址http://yann.lecun.com/exdb/mnist/

MedMNIST

上海交大开源医疗版MNIST数据集

项目地址:https://medmnist.github.io/

论文地址:https://arxiv.org/pdf/2010.14925v1.pdf

GitHub 地址:https://github.com/MedMNIST/MedMNIST

数据集下载地址:https://www.dropbox.com/sh/upxrsyb5v8jxbso/AADOV0_6pC9Tb3cIACro1uUPa?dl=0

共包含 10 个预处理开放医疗图像数据集(其数据来自多个不同的数据源,并经过预处理)。
和 MNIST 数据集一样,MedMNIST 数据集在轻量级 28 × 28 图像上执行分类任务,所含任务覆盖主要的医疗图像模态和多样化的数据规模。根据研究人员的设计,MedMNIST 数据集具备以下特性:

  • 教育性:该数据集中的多模态数据来自多个具备知识共享许可证的开放医疗图像数据集,可以用作教育目的。
  • 标准化:研究人员对数据进行预处理,将其转化为相同的格式,因此用户无需具备背景知识即可使用。
  • 多样性:多模态数据集涵盖多种数据规模(从 100 到 100,000)和任务(二分类 / 多分类、有序回归和多标签)。
  • 轻量级:图像大小为 28 × 28,便于快速设计原型和试验多模态机器学习与 AutoML 算法。

受 Medical Segmentation Decathlon(医学分割十项全能)的启发,该研究也设计了 MedMNIST Classification Decathlon(MedMNIST 分类十项全能),作为 AutoML 在医疗图像分类领域的基准。

SVHN

ImageNet

PascalVoc

openml

如果你想直接通过Scikit-learn访问更多的公共可用数据集,请了解,有一个方便的函数datasets.fetch_openml,可以让您直接从openml.org网站获取数据。
这个网站包含超过21000个不同的数据集,可以用于机器学习项目。
https://www.openml.org/
https://archive.ics.uci.edu/ml/datasets.php

汽车型号数据集

http://ai.stanford.edu/~jkrause/cars/car_dataset.html

code: https://github.com/foamliu/Car-Recognition

人脸数据库

Glint360K数据集

Glint360K数据集包含36万类别的1800万张图像,不论是类别数还是图像数,相比MS1MV2数据集都有大幅提升。

论文地址:https://arxiv.org/pdf/2010.05222.pdf

代码地址:https://github.com/deepinsight/insightface/tree/master/recognition/partial_fc

FERET人脸数据库

http://www.nist.gov/itl/iad/ig/colorferet.cfm

由 FERET 项目创建,此图像集包含大量的人脸图像,并且每幅图中均只有一个人脸。该集中,同一个人的照片有不同表情、光照、姿态和年龄的变化。
包含 1 万多张多姿态和光 照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一。其中的多数人是西方人,每 个人所包含的人脸图像的变化比较单一。

CMU Multi-PIE人脸数据库

http://www.flintbox.com/public/project/4742/

由美国卡耐基梅隆大学建立。所谓“PIE”就是姿态(Pose),光照(Illumination)和表 情(Expression)的缩写。
CMU Multi-PIE 人脸数据库是在 CMU-PIE 人脸数据库的基础上发展起来的。包含 337 位志愿者的 75000 多张多姿态,光照和表情的面部图像。
其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要 的测试集合。

YALE人脸数据库(美国,耶鲁大学)

http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html

由耶鲁大学计算视觉与控制中心创建,包含 15 位志愿者的 165 张图片,包含光照、表情和姿态的变化。
Yale 人脸数据库中一个采集志愿者的 10 张样本,相比较 ORL 人脸数据库 Yale 库中每 个对象采集的样本包含更明显的光照、表情和姿态以及遮挡变化。

YALE人脸数据库 B

https://computervisiononline.com/dataset/1105138686

包含了 10 个人的 5850 幅在 9 种姿态,64 种光照条件下的图像。
其中的姿态和光照变 化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析。由于采集人数较少,该数据库的进一步应用受到了比较大的限制。

ORL人脸数据库

https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

由英国剑桥大学 AT&T 实验室创建,包含 40 人共 400 张面部图像,部分志愿者的图像 包括了姿态,表情和面部饰物的变化。
该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到 90%以上,因此进一步利用的价值已经不大。
ORL人脸数据库中一个采集对象的全部样本库中每个采集对象包含 10 幅经过归一化处理的灰度图像,图像尺寸均为 92×112,图像背景为黑色。
其中采集对象的面部表情和细节 均有变化,例如笑与不笑、眼睛睁着或闭着以及戴或不戴眼镜等,不同人脸样本的姿态也有变化,其深度旋转和平面旋转可达 20 度。

BioID人脸数据库

https://www.bioid.com/facedb/

包含在各种光照和复杂背景下的 1521 张灰度面部图像,眼睛位置已经被手工标注。

年龄识别数据集IMDB-WIKI

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

包含 524230 张从 IMDB 和 Wikipedia 爬取的名人数据图片。
应用了一个新颖的化回归 为分类的年龄算法。本质就是在0-100之间的 101 类分类后,对于得到的分数和 0-100 相乘,并将最终结果求和,得到最终识别的年龄。

Caltech 10000 Web Faces

http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/

发布于2007年,这是一个灰度人脸数据集,使用Google图片搜索引擎用关键词爬取所得,包含了7092张图,10524个人脸,平均分辨率在304×312。除此之外还提供双眼鼻子,和嘴巴共4个坐标位置,在早期被较多地使用,现在的方法已经很少用灰度数据集做评测。

WIDER Face

http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/

发布于2015年,FDDB评测标准由于只有几千张图像,这样的数据集在人脸的姿态、尺度、表情、遮挡和背景等多样性上非常有限,训练出来的模型难以被很好的评判,算法很快就达到饱和。在这样的背景下香港中文大学提出了Wider-face数据集,在很长一段时间里,大型互联网公司和科研机构都在Wider-face上做人脸检测算法竞赛。

Wider-face总共有32203张图片,共有393703张人脸,比FDDB数据集大10倍,而且在面部的尺寸、姿势、遮挡、表情、妆容、光照上都有很大的变化,算法不仅标注了框,还提供了遮挡和姿态的信息,自发布后广泛应用于评估性能比传统方法更强大的卷积神经网络。

Wider-face中的图像分辨率较高,所有图像的宽都缩放到1024像素,最小标注的人脸大小为10×10,平均一张图超过10个人脸,密集小人脸非常多。训练集,验证集,测试集分别占40%,10%,50%,测试集非常大,结果可靠性高。

根据EdgeBox方法的检测率Wider-face评测被划分为三个难度等级:Easy, Medium, Hard,可以在各个任务维度上进行评测,比如Hard等级非常适合评测小脸检测框架。

MALF

http://www.cbsr.ia.ac.cn/faceevaluation

MALF(Multi-Attribute Labelled Faces)发布于2015年,是为了更加细粒度地评估野外环境中人脸检测模型而设计的数据库。数据主要来源于Internet,包含5250个图像、11931个人脸。每一幅图像包含正方形边界框,头部姿态的俯仰程度,包括小中大三个等级的标注。该数据集忽略了小于20×20或者非常难以检测的人脸,共包含大约838个人脸,占该数据集的7%。同时该数据集还提供了性别,是否带眼镜、是否遮挡、是否是夸张的表情等辅助信息。

MAFA

http://www.escience.cn/people/geshiming/mafa.html

发布于2017年,这是一个遮挡人脸检测数据集,总共包含30811张图、35806张被遮挡的人脸,包含各种方向和尺度的遮挡。

它们首先将人脸分为4个区域,分为眼睛、鼻子、嘴巴、下颌,根据遮挡区域数量将遮挡程度分为三档。weak occlusion对应一到两个区域的遮挡,medium occlusion对应3个区域的遮挡,heavy occlusion对应4个区域的遮挡。

人脸方向包含5个,left、front、right、left-front及right-front。遮挡类型分为4个,即人造的纯色遮挡物、人造的复杂纹理遮挡物、手/头发等身体造成的自遮挡以及复杂类型。

Unconstrained Face Detection Dataset(UFDD)

https://ufdd.info/
发布于2018年,这是一个非限制场景下的人脸检测数据集,总共包含6425张图、10897张人脸,包含雨天(Rain)、雪天(Snow)、雾天(Haze)、模糊(Blur)、光照(Illumination)、晶体障碍(Lens impediments)和干扰物(Distractors)等7个场景。

除此之外,还有一些比较特殊的,比如鱼眼人脸检测数据集,由于比较小众,就不再集中介绍。总的来说,人脸检测数据集的发展历史,就是不断向真实复杂场景靠近。

MTFL与MAFL

http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html

发布于2014年,这里包含了两个数据集。

Multi-Task Facial Landmark(MTFL)数据集包含了12995张脸,5个关键点标注,另外也提供了性别、是否微笑、是否佩戴眼镜以及头部姿态的信息。

The Japanese Female Facial Expression(JAFFE) Database

http://www.kasrl.org/jaffe.html

1998年发布,这是比较小和老的数据库。该数据库是由10位日本女性在实验环境下根据指示做出各种表情,再由照相机拍摄获取的人脸表情图像。整个数据库一共有213张图像,10个人,全部都是女性,每个人做出7种表情,这7种表情分别是sad、happy、angry、disgust、surprise、fear、neutral,每组大概20张样图。

Fer2013

https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data
发布于2013年,该数据集包含共26190张48×48灰度图,图片的分辨率比较低,共6种表情。分别为anger生气、disgust厌恶、fear恐惧、happy开心、sad伤心、surprised惊讶、normal中性。

EmotioNet

http://cbcsl.ece.ohio-state.edu/EmotionNetChallenge/
发布于2017年,共950,000张图,其中包含基本表情、复合表情,以及表情单元的标注。

Adience

https://www.openu.ac.il/home/hassner/Adience/data.html#frontalized
发布于2014年,这是采用iPhone5或更新的智能手机拍摄的数据,共2284个人26580张图像。它的标注采用的是年龄段的形式而不是具体的年龄,其中年龄段为(0-2、4-6、8-13、15-20、25-32、38-43、48-53、60+)。

IMDB-wiki

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

发布于2015年,IMDB-WIKI人脸数据库是由IMDB数据库和Wikipedia数据库组成,其中IMDB人脸数据库包含了460723张人脸图片,而Wikipedia人脸数据库包含了62328张人脸数据库,总共523051张人脸数据。都是从IMDb和维基百科上爬取的名人图片,根据照片拍摄时间戳和出生日期计算得到的年龄信息,以及性别信息,对于年龄识别和性别识别的研究有着重要的意义,这是目前年龄和性别识别最大的数据集。

SCUT-FBP5500

https://github.com/HCIILAB/SCUT-FBP5500-Database-Release
发布于2017年,数据集共5500个正面人脸,年龄分布为15-60,全部都是自然表情。包含不同的性别分布和种族分布(2000亚洲女性、2000亚洲男性、750高加索男性、750高加索女性),数据分别来自于数据堂,US Adult database等。每一张图由60个人进行评分,共评为5个等级,这60个人的年龄分布为18~27岁,均为年轻人。适用于基于表观和形状等的模型研究。同时,每一个图都提供了86个关键点的标注。

综合

https://github.com/ChaofWang/Awesome-Super-Resolution#datasets

该项目主要包含以下内容:

  • 最佳论文库/项目列表
  • 数据集
  • 论文:非深度学习方法、深度学习方法(2014-2020)
  • workshop论文
  • 综述

免费数据集下载(很全面)

← Previous Next →
Less
More